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Introduction

Firm raises capital from heterogeneous investors to fund project

Investors face strategic risk: project succeeds only if enough invest

• Possible outcomes where investors don’t invest, expecting others won’t

This paper: What is optimal mechanism that guarantees investment?

• Compensate for strategic risk, which depends on amount invested

• How does heterogeneity in investor size affect scheme and payoffs?

• Does firm offer differential returns based on size? Who is favored?
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Example (1)

Firm’s project succeeds if capital raised exceeds I ∼ U [0, 30]

• Success yields additional surplus

Agent 1 has 10 units of capital, agent 2 has 20 units

• Outside option is safe asset with net return of 10%

Firm wants to guarantee full investment; offers returns under success

• If offer 10%, full-investment NE at minimum cost, but also other NE

• Optimal scheme makes investment dominant for one of the agents
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Example (2)

Suppose firm makes investment dominant for agent 1

• Must offer agent 1 net return (slightly above) r satisfying r
3 = 10%

• Then offer 10% to agent 2. Cost is 10(30%) + 20(10%) = 5

Firm’s cost is lower if investment is made dominant for agent 2

• Must offer agent 2 net return (slightly above) r satisfying 2r
3 = 10%

• Then offer 10% to agent 1. Cost is 10(10%) + 20(15%) = 4

Result: Larger investor receives higher net return than smaller investor
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Example (3)

Suppose we now transfer 4 units of capital from agent 1 to agent 2

• Firm offers net return of 12.5% to agent 2 and 10% to agent 1

• Cost is 6(10%) + 24(12.5%) = 3.6

Result: Firm benefits from dispersion in investor size

Result: Dispersion reduces range of net returns

What we do: General setting. Identify condition under which results hold

• Condition on distribution of threshold I; implied by log-concavity
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Setup

Firm owns project that requires capital to be implemented/“succeed”

• Required capital is uncertain: distributed over [0, I] with cdf F

• Success yields fixed additional surplus A > 0

Set of N > 1 agents. Agent n ∈ S = {1, . . . , N} has endowment xn

Firm proposes compensation contract to each agent

• Agents decide simultaneously if invest or take safe asset return θ > 0

• Firm wants to guarantee unique NE outcome
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Contracts

For each n, net returns (rn, kn) conditional on investment xn ∈ [0, xn]

• rn if success; kn if failure

Denote n’s decision by yn ∈ {0, 1}. Firm’s budget constraint (BC) is

N∑

n=1

rnynxn ≤ A and
N∑

n=1

knynxn ≤ 0 ∀Y = (y1, . . . , yN )

Analyze firm’s problem in two steps:

(i) for fixed (xn)n∈S , find optimal (rn, kn)n∈S guaranteeing these investments

(ii) given (i), find optimal (xn)n∈S with xn ∈ [0, xn] for each n
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Firm’s problem: Step (i)

Find least-cost (rn, kn)n∈S s.t. investments (xn)n∈S are unique NE

• Since open set, require unique NE when each rn increased by any ε > 0

Let E be set of NE profiles given (rn, kn)n∈S . Two conditions:

(C1) Y1 ≡ (1, . . . , 1) ∈ E
(C2) Y ∈ E,Y 6= Y1 =⇒ ∃n : yn = 0, Un(1,Y−n) = Un(0,Y−n)

Let XN ≡
∑N

n=1 xn. Optimal scheme guaranteeing (xn)n∈S solves:

max
(rn,kn)n∈S

V =

(
A−

N∑

n=1

rnxn

)
F (XN )−

N∑

n=1

knxn (1− F (XN ))

subject to (BC), (C1), and (C2)
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Discussion of assumptions

Firm cannot coordinate agents to its preferred equilibrium

• Consistent with experiments (e.g. Devetag-Ortmann 2007)

Agents make choices simultaneously

• Extends to sequential moves under solution concepts used in literature

Firm relies on contracts that are bilateral and simple

• Simple excludes menus. Without loss if indivisibilities or condition holds

Budget constraint on and off path

• Without loss given focus on unique implementation



Characterizing the optimal return schedule

Lemma
(C1)-(C2)⇐⇒ ∃ permutation π = (n1, . . . , nN ) of set of agents s.t., for

each i, ni is willing to invest if (n1, . . . , ni−1) do, no matter rest

(⇒) ◦ By (C2), ∃n1 willing to invest if noone does; by (C1), n1 willing if all do

◦ Hence, n1 willing to invest no matter what others do

◦ Induction shows ni willing to invest if (n1, . . . , ni−1) do, no matter rest

Optimal schedule specifies π = (n1, . . . , nN ) and (ri, ki) for each ni

• First characterize (r∗i , k
∗
i )i∈S and then solve for π∗ = (n∗1, . . . , n

∗
N )
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Optimal returns

Given π = (n1, . . . , nN ), let Xi ≡
∑i

j=1 xnj

Proposition

Optimal schedule specifies permutation π and (r∗i , k
∗
i )i∈S s.t., for each i,

• ni is indifferent over investing if (n1, . . . , ni−1) invest and others don’t

• Returns satisfy

r∗i =
θ

F (Xi)
and k∗i = 0



Sketch of proof (1)

By Lemma, ∃π and (r∗i , k
∗
i ) s.t. ∀i ∈ S and ∀j ∈ {i, . . . , N},

r∗i F (Xj) + k∗i (1− F (Xj)) ≥ θ

By BC and θ > 0, schedule must set ∀i

r∗i > 0 ≥ k∗i → strategic complementarities (SC)

Thus, optimal scheme is “divide and conquer”:

r∗i F (Xi) + k∗i (1− F (Xi)) = θ ∀i ∈ S
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Sketch of proof (2)

Given r∗i F (Xi) + k∗i (1− F (Xi)) = θ, set k∗i = 0, r∗i =
θ

F (Xi)

◦ If ki < 0, ↑ ki by small ε > 0 and ↓ ri by εηi for ηi ≡
1− F (Xi)

F (Xi)

◦ Incentives are preserved

◦ Firm’s payoff V changes by ε
(F (XN )− F (Xi))

F (Xi)
≥ 0

Intuition: firm conditions on all investing, ni on only (n1, . . . , ni)

• Hence, firm values ri relative to ki more than ni

Remark
Optimal scheme yields unique rationalizable outcome
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Finding the optimal permutation

(r∗i , k
∗
i )i∈S maximally relaxes BC. Firm can thus guarantee (xn)n∈S iff

A ≥
N∑

i=1

θ

F (Xi)
xni for some π

Firm’s payoff is

V =

(
A− θ

N∑

i=1

xni

F (Xi)

)
F (XN )

Optimal permutation π∗ minimizes firm’s costs under success:

θ

N∑

i=1

xni

F (Xi)
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Optimal permutation

Proposition

Suppose 1/F (x) convex over [0, X]

For any investments (xn)n∈S with XN ≤ X, π∗ = (n∗1, . . . , n
∗
N ) satisfies

xn∗1 ≥ . . . ≥ xn∗N

Hence, larger investors receive higher net returns than smaller investors

Remark
F (x) log-concave =⇒ 1/F (x) convex

Most commonly used distributions are log-concave
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Example

F uniform over [0, 30], θ = 10%, (x1, x2) = (10, 20)

• Optimal permutation is π∗ = (2, 1)

0 1 2 3

Example

Suppose F uniform on [0, 3], ✓ = 10%, integer capital units

• Pay 30% on first unit, 15% on second, 10% on third

• If N = 2 with (x1, x2) = (1, 2), pay 15% to agent 2, 10% to agent 1

• Firm’s cost is 4. If reverse order in permutation, cost is 5
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Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.

✓

N=2X

i=1

xn⇤
i

✓
1

F (X⇤
i )

� 1

F (XN)

◆
.

x2 � x1

5 Extensions

5.1 Firm’s initial capital

5.2 Proportional surplus

5.3 Credibility of payments

5.4 Social planner

6 Concluding Remarks

A Proofs

Throughout the Appendix, we abbreviate Nash equilibrium by NE.

A.1 Proof of Lemma 1

(=)) We begin by proving that (C1)-(C2) imply a permutation as described in the

lemma. Suppose that (C1)-(C2) hold under a given scheme. Note that by (C2), there
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Figure 3: Price of coordination for N = 2 agents with aggregate capital X2 = 30, F uniform
over [0, 30], and ✓ = 10%, as

�
xn⇤

1
� xn⇤

2

�
increases from 10 to 30.

H of capital in S, and let bS be the set of N agents induced by bH. The set of viable

projects in bS is larger than that in S.

0 10 20 30

Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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profitability, and thus viability, of new projects. There is in fact empirical evidence
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Intuition

Agent ni paid on marginal unit invested: r∗i = θ/F (Xi)

Thus, if 1/F (x) is convex, decreasing order minimizes costs

• I.e., optimal to move down the return curve θ/F (Xi) “quickly”

Intuitively, large xn self-insures agent, reduces required risk premium

• Place large xn when risk premium drops most sharply with investment

Remark
1/F (x) convex (over range) not only sufficient but also necessary for result
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Characterizing the optimal investments

So far (xn)n∈S as given. What are the optimal capital amounts?

Definition
For two N -vectors x and x̂, x̂ majorizes x if

• components of x̂ and x have same total sum, and

• ∀m, sum of m smallest components is weakly smaller in x̂ than in x
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Optimal investments

Proposition

Suppose 1/F (x) convex over [0, X]. Take investments (xn)n∈S , XN ≤ X
Let investments (x̂n)n∈S majorize (xn)n∈S

Firm’s expected payoff under (x̂n)n∈S is higher than that under (xn)n∈S

Corollary

Given (xn)n∈S , firm raises capital from agents with largest endowments

• If XN < XN , not only preferential returns but also preferential access
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Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.
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Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result
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Intuition

Aggregating capital of subset reduces strategic uncertainty

• Self-insurance: single agent knows she will invest the whole amount

More generally, derive (x̂n)n from (xn)n by finite sequence of transfers

• From small to large (Hardy-Littlewood-Polya 1934)

We show any such transfer lowers firm’s costs

• Move down return curve θ/F (Xi) “more quickly” given original π∗

• Changing to optimal π∗ can only raise firm’s payoff further



Distribution of returns

Given π∗ = (n∗1, . . . , n
∗
N ), range of net returns is F (XN ) (r∗1 − r∗N )

Proposition

Suppose 1/F (x) convex over [0, X]. Take investments (xn)n∈S , XN ≤ X
Let investments (x̂n)n∈S majorize (xn)n∈S

Range of net returns under (x̂n)n∈S is smaller than that under (xn)n∈S

Dispersion lowers largest investor’s return; keeps smallest unchanged

• As a result, range of final capital can decrease with dispersion
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Discussion of results

Differential net returns: larger investors get more per unit invested

• Consistent with evidence from private equity

• Suggests “winner-takes-all dynamics”: large investors become larger

Distribution of capital: larger investments from wealthier investors

• Dispersion in investor size increases firm’s payoff

• Dispersion thus also increases feasibility of investment

Return advantage of large investors depends on capital distribution

• Scheme is less discriminatory when investments are more unequal

• To the extent that final capital may become more equal with dispersion



Firm’s initial capital (1)

Suppose firm has capital W > 0, with W < θXN

• BC: ∀Y = (y1, . . . , yN ),

N∑

n=1

rnynxn ≤W +A and
N∑

n=1

knynxn ≤W

By Lemma: ni willing to invest if (n1, . . . , ni−1) do, no matter rest

Firm can induce strategic substitutability. Show ri ≥ ki ∀i is optimal

• If ki > ri for some i, then by BC kj < rj for some j 6= i

• ni indifferent when all others invest; nj when only (n1, . . . , nj−1) do

• Perturbation with ↓ ki, ↑ ri, ↑ kj , ↓ rj (weakly) increases firm’s payoff
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Firm’s initial capital (2)

Proposition

Suppose 1/F (x) convex over [0, X]. Take (xn)n∈S , W +XN ≤ X
• π∗ = (n∗1, . . . , n

∗
N ) satisfies xn∗1 ≥ . . . ≥ xn∗N

• (r∗i , k
∗
i )i∈S satisfy

k∗i =
min{θxn∗i ,Wi}

xn∗i
and r∗i =

θ − k∗i (1− F (W +Xi))

F (W +Xi)

where WN ≡W, Wi ≡ max{W−
N∑

j=i+1
k∗jxn∗j , 0} for i ∈ {1, . . . , N − 1}

Benchmark results extend, plus predictions on risk profile

• Smallest investors fully insured, until W depleted

• Then order investors in decreasing size order
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Proportional surplus

Suppose project success yields surplus Rx if x invested, for R > 0

• BC: ∀Y = (y1, . . . , yN ),

N∑

n=1

rnynxn ≤
N∑

n=1

Rynxn and
N∑

n=1

knynxn ≤ 0

Problem with fixed surplus AR ≡ RXN is relaxed version

• BC with proportional surplus adds restriction: maxn∈S rn ≤ R

Benchmark results extend. Can guarantee (xn)n∈S iff r∗n1
≤ R

• Solution to relaxed problem minimizes highest return given constraints
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Concluding remarks

Capital raising for new projects must address strategic risk

• We characterize firm’s optimal unique-implementation scheme

Broad insight: strategic risk may be a driver of inequality

• Profit-max mechanism favors certain agents to lower risk on others

• Under condition, favorable terms to those already in favorable position

Further applications

• Monopolist offers exclusive contracts to buyers w/different demand size

• Firm offers rewards to team of workers with different ability

• Bank offers collateral and interest to depositors of different size



Thank you!
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