Expected utility theory exercises

Tai-Wei Hu

Solutions

1. Consider the expected utility theory presented in class, but with C' = {¢;, ¢, c3}. We

assume that ¢; < cs.

1.1 Show that if there is a function v : C' — R such that

p 3 if and only if > ple)u(e) <D pl(en)ule), (1)
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then 3 satisfies (EU1)-(EU3).

Solution. I only show (EU2) and (EU3). For (EU3), since u represents >, we have
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ZNl(Ci)U(Cz’) < Zuz(ci)u(ci) < ZM3(Cz‘)U(Cz‘)-
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If we let
Z?:1 pa(ci)u(c;) — ZL pa(ci)u(c;)
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then it is straightforward to verify that

Z/L2(Ci)u(ci) =a <Z Ml(Cz‘)U(Ci)> +(1—-a) (Z M3(Cz‘)u(0z’)> ,
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and hence (EU3) follows from representation.

Now consider (EU2). Suppose that py < po. Then,
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o Z mlc)ule) + (1= a) > psler)uler) < ad pale)ules) + (1 —a) Y paler)ules).
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Similarly, if auy + (1 — a)mus < aps + (1 — a)pug and o < 1, then
3 3
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which implies that

aZul Cz Cl <O[Z/,L2 Cl

and, dividing both sides by «, this implies that pu; < po.

1.2 Suppose that 3 satisfies (EU1)-(EU3). Construct u as in class with u(cz) = 1 and
u(cq) = 0. Show that (1) holds with the following steps.

(a) Show that acs + (1 —a)c; < d’cs + (1 — ')y if and only if o < /.

Solution. We use ., to denote the lottery that concentrates on ¢;. Suppose that o < o'.
Then,
0oy = W0ey + (1 — @)dey = @ley + (1 — @)y, (2)

where the preference follows from (EU2) and c3 = ¢;. Now,

A&'Oey + (1 —a')dg,
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= abey + (1 — )by,

where the strict preference follows from (EU2) and (2). The other direction is similar.

(b) For any u € A(C), show that

o~ [u(ca)p(cz) + p(es)les + [(1 — ulez))u(cz) + p(er)ler



Solution.

o= )b+ (1— pler)) 1ﬁ(—ﬂ())5+1ﬁ(—ﬂ())a]

~ plez)u(c2)de; + (1 — u(c2))de,] + (1 = p(c2)) LIL_L(—Zl()CQ)(SCI 1 ﬁ(;zz)@)é%

= [u(e2)plea) + ples)]de, + [(1 —ulcz))ulca) + pler)]de,
where the indifference follows from (EU2).
(c) Show that the result follows from (a) and (b) and that E,(u) = u(c2)p(ca2) + p(cs).
Solution. The result is immediate.

2. Show that the set of simple lotteries, A(R, ), is closed under compound lottery, that
is, if gy and psy are simple lotteries and « € (0, 1), then au; + (1 — a)ps is well-defined

and is itself a simple lottery.

Solution. Let uqy and us be two simple lotteries, and let
C={ceRy:p(c)>0or usc) >0}

Clearly, C is also a finite set. This shows that au; + (1 — a)us is also a simple lottery

3. Show that if = is a relation over A(R. ) satisfying (EU1)-(EU3) represented by u, then

1. = satisfies MC iff u is strictly increasing;

Solution. If u is strictly increasing, then ¢; > ¢y implies tat u(c;) > u(ce) and
hence, ¢; = co. Thus, MC is satisfied. Similarly, if MC is satisfied and if ¢; > ¢y,

then ¢; > ¢y and hence u(cy) > u(es).

2. =2 satisfies (strict) risk aversion iff w is (strictly) concave.

Solution. If u is concave, then for any i, E,[u(c)] < u[E,(c)] by Jensen’s inequality,
which implies ¢ = E,(c), and hence 3 satisfies risk aversion. Conversely, if 3

satisfies risk aversion, then for any ¢y, ¢, and any « € (0, 1),

O5501 + (1 - 05)502 j 5@C1+(1—a)cQ,



and hence

au(er) + (1 — a)u(c) < ufac; + (1 — a)cy.

Thus, u is concave.

4. Consider the insurance problem presented in class. There are two states of the world:

high (h) and low (¢), and the probability of ¢ is p. Without insurance, consumption

at h is wy, and at £ is w, with w, < wy,. One unit of insurance pays 1 at ¢ but charges

premium p. The agent chooses how much insurance to buy, and, with x units of insurance,

consumption levels are

cn = wp, —pr and ¢ = we + (1 — p)z.

The agent maximizes expected utility with utility function u and is strictly risk averse.

4.1 Suppose that p = p. Find the optimal x.

Solution. The maximization problem is

max(1 — p)u(wy, — px) + pujwe + (1 — p)z|.

x>0

The FOC then implies
—(1 = ppu’ (wn, — pr) + p(1 — p)u'fw, + (1 = p)z] <0,
with equality whenever = > 0.
Thus, when p = p, this implies
—u'(wp, — px) + v |we + (1 — p)z] <O0.

Now, since wy, > wy,

xr=w, —w;, >0

solve (4) and is unique.

4.2 Show that there exists an upper bound p < 1 on the premium such that for all p > p,

optimal z = 0.



Solution. Let p be determined by

p Mul(wz)

T—p (1= pu'(ws)

Then, for any p > p, (3) is satisfied with z = 0.



