Expected utility theory exercises

Tai-Wei Hu

Solutions

1. Consider the expected utility theory presented in class, but with $C=\left\{c_{1}, c_{2}, c_{3}\right\}$. We assume that $c_{1} \prec c_{3}$.
1.1 Show that if there is a function $u: C \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\mu \precsim \mu^{\prime} \text { if and only if } \sum_{i=1}^{n} \mu\left(c_{i}\right) u\left(c_{i}\right) \leq \sum_{i=1}^{n} \mu^{\prime}\left(c_{i}\right) u\left(c_{i}\right), \tag{1}
\end{equation*}
$$

then \precsim satisfies (EU1)-(EU3).
Solution. I only show (EU2) and (EU3). For (EU3), since u represents \succ, we have

$$
\sum_{i=1}^{3} \mu_{1}\left(c_{i}\right) u\left(c_{i}\right)<\sum_{i=1}^{3} \mu_{2}\left(c_{i}\right) u\left(c_{i}\right)<\sum_{i=1}^{3} \mu_{3}\left(c_{i}\right) u\left(c_{i}\right) .
$$

If we let

$$
\alpha=\frac{\sum_{i=1}^{3} \mu_{3}\left(c_{i}\right) u\left(c_{i}\right)-\sum_{i=1}^{3} \mu_{2}\left(c_{i}\right) u\left(c_{i}\right)}{\sum_{i=1}^{3} \mu_{3}\left(c_{i}\right) u\left(c_{i}\right)-\sum_{i=1}^{3} \mu_{1}\left(c_{i}\right) u\left(c_{i}\right)},
$$

then it is straightforward to verify that

$$
\sum_{i=1}^{3} \mu_{2}\left(c_{i}\right) u\left(c_{i}\right)=\alpha\left(\sum_{i=1}^{3} \mu_{1}\left(c_{i}\right) u\left(c_{i}\right)\right)+(1-\alpha)\left(\sum_{i=1}^{3} \mu_{3}\left(c_{i}\right) u\left(c_{i}\right)\right),
$$

and hence (EU3) follows from representation.
Now consider (EU2). Suppose that $\mu_{1} \prec \mu_{2}$. Then,

$$
\sum_{i=1}^{3} \mu_{1}\left(c_{i}\right) u\left(c_{i}\right)<\sum_{i=1}^{3} \mu_{2}\left(c_{i}\right) u\left(c_{i}\right) .
$$

Hence,

$$
\alpha \sum_{i=1}^{3} \mu_{1}\left(c_{i}\right) u\left(c_{i}\right)+(1-\alpha) \sum_{i=1}^{3} \mu_{3}\left(c_{i}\right) u\left(c_{i}\right)<\alpha \sum_{i=1}^{3} \mu_{2}\left(c_{i}\right) u\left(c_{i}\right)+(1-\alpha) \sum_{i=1}^{3} \mu_{3}\left(c_{i}\right) u\left(c_{i}\right) .
$$

Similarly, if $\alpha \mu_{1}+(1-\alpha) m u_{3} \prec \alpha \mu_{2}+(1-\alpha) \mu_{3}$ and $\alpha<1$, then

$$
\alpha \sum_{i=1}^{3} \mu_{1}\left(c_{i}\right) u\left(c_{i}\right)+(1-\alpha) \sum_{i=1}^{3} \mu_{3}\left(c_{i}\right) u\left(c_{i}\right)<\alpha \sum_{i=1}^{3} \mu_{2}\left(c_{i}\right) u\left(c_{i}\right)+(1-\alpha) \sum_{i=1}^{3} \mu_{3}\left(c_{i}\right) u\left(c_{i}\right)
$$

which implies that

$$
\alpha \sum_{i=1}^{3} \mu_{1}\left(c_{i}\right) u\left(c_{i}\right)<\alpha \sum_{i=1}^{3} \mu_{2}\left(c_{i}\right) u\left(c_{i}\right),
$$

and, dividing both sides by α, this implies that $\mu_{1} \prec \mu_{2}$.
1.2 Suppose that \precsim satisfies (EU1)-(EU3). Construct u as in class with $u\left(c_{3}\right)=1$ and $u\left(c_{1}\right)=0$. Show that (1) holds with the following steps.
(a) Show that $\alpha c_{3}+(1-\alpha) c_{1} \prec \alpha^{\prime} c_{3}+\left(1-\alpha^{\prime}\right) c_{1}$ if and only if $\alpha<\alpha^{\prime}$.

Solution. We use $\delta_{c_{i}}$ to denote the lottery that concentrates on c_{i}. Suppose that $\alpha<\alpha^{\prime}$. Then,

$$
\begin{equation*}
\delta_{c_{3}}=\alpha \delta_{c_{3}}+(1-\alpha) \delta_{c_{3}} \succ \alpha \delta_{c_{3}}+(1-\alpha) \delta_{c_{1}} \tag{2}
\end{equation*}
$$

where the preference follows from (EU2) and $c_{3} \succ c_{1}$. Now,

$$
\begin{aligned}
& \alpha^{\prime} \delta_{c_{3}}+\left(1-\alpha^{\prime}\right) \delta_{c_{1}} \\
= & \frac{\alpha^{\prime}-\alpha}{1-\alpha} \delta_{c_{3}}+\left(1-\frac{\alpha^{\prime}-\alpha}{1-\alpha}\right)\left[\alpha \delta_{c_{3}}+(1-\alpha) \delta_{c_{1}}\right] \\
\succ & \frac{\alpha^{\prime}-\alpha}{1-\alpha}\left[\alpha \delta_{c_{3}}+(1-\alpha) \delta_{c_{1}}\right]+\left(1-\frac{\alpha^{\prime}-\alpha}{1-\alpha}\right)\left[\alpha \delta_{c_{3}}+(1-\alpha) \delta_{c_{1}}\right] \\
= & \alpha \delta_{c_{3}}+(1-\alpha) \delta_{c_{1}},
\end{aligned}
$$

where the strict preference follows from (EU2) and (2). The other direction is similar.
(b) For any $\mu \in \Delta(C)$, show that

$$
\mu \sim\left[u\left(c_{2}\right) \mu\left(c_{2}\right)+\mu\left(c_{3}\right)\right] c_{3}+\left[\left(1-u\left(c_{2}\right)\right) \mu\left(c_{2}\right)+\mu\left(c_{1}\right)\right] c_{1} .
$$

Solution.

$$
\begin{aligned}
\mu & =\mu\left(c_{2}\right) \delta_{c_{2}}+\left(1-\mu\left(c_{2}\right)\right)\left[\frac{\mu\left(c_{1}\right)}{1-\mu\left(c_{2}\right)} \delta_{c_{1}}+\frac{\mu\left(c_{3}\right)}{1-\mu\left(c_{2}\right)} \delta_{c_{3}}\right] \\
& \sim \mu\left(c_{2}\right)\left[u\left(c_{2}\right) \delta_{c_{3}}+\left(1-u\left(c_{2}\right)\right) \delta_{c_{1}}\right]+\left(1-\mu\left(c_{2}\right)\right)\left[\frac{\mu\left(c_{1}\right)}{1-\mu\left(c_{2}\right)} \delta_{c_{1}}+\frac{\mu\left(c_{3}\right)}{1-\mu\left(c_{2}\right)} \delta_{c_{3}}\right] \\
& =\left[u\left(c_{2}\right) \mu\left(c_{2}\right)+\mu\left(c_{3}\right)\right] \delta_{c_{3}}+\left[\left(1-u\left(c_{2}\right)\right) \mu\left(c_{2}\right)+\mu\left(c_{1}\right)\right] \delta_{c_{1}},
\end{aligned}
$$

where the indifference follows from (EU2).
(c) Show that the result follows from (a) and (b) and that $\mathbb{E}_{\mu}(u)=u\left(c_{2}\right) \mu\left(c_{2}\right)+\mu\left(c_{3}\right)$.

Solution. The result is immediate.
2. Show that the set of simple lotteries, $\Delta\left(\mathbb{R}_{+}\right)$, is closed under compound lottery, that is, if μ_{1} and μ_{2} are simple lotteries and $\alpha \in(0,1)$, then $\alpha \mu_{1}+(1-\alpha) \mu_{2}$ is well-defined and is itself a simple lottery.

Solution. Let μ_{1} and μ_{2} be two simple lotteries, and let

$$
C=\left\{c \in \mathbb{R}_{+}: \mu_{1}(c)>0 \text { or } \mu_{2}(c)>0\right\} .
$$

Clearly, C is also a finite set. This shows that $\alpha \mu_{1}+(1-\alpha) \mu_{2}$ is also a simple lottery 3. Show that if \precsim is a relation over $\Delta\left(\mathbb{R}_{+}\right)$satisfying (EU1)-(EU3) represented by u, then 1. \precsim satisfies MC iff u is strictly increasing;

Solution. If u is strictly increasing, then $c_{1}>c_{2}$ implies tat $u\left(c_{1}\right)>u\left(c_{2}\right)$ and hence, $c_{1} \succ c_{2}$. Thus, MC is satisfied. Similarly, if MC is satisfied and if $c_{1}>c_{2}$, then $c_{1} \succ c_{2}$ and hence $u\left(c_{1}\right)>u\left(c_{2}\right)$.
2. \precsim satisfies (strict) risk aversion iff u is (strictly) concave.

Solution. If u is concave, then for any $\mu, \mathbf{E}_{\mu}[u(c)] \leq u\left[\mathbf{E}_{\mu}(c)\right]$ by Jensen's inequality, which implies $\mu \precsim \mathbb{E}_{\mu}(c)$, and hence \precsim satisfies risk aversion. Conversely, if \precsim satisfies risk aversion, then for any c_{1}, c_{2} and any $\alpha \in(0,1)$,

$$
\alpha \delta_{c_{1}}+(1-\alpha) \delta_{c_{2}} \precsim \delta_{\alpha c_{1}+(1-\alpha) c_{2}},
$$

and hence

$$
\alpha u\left(c_{1}\right)+(1-\alpha) u\left(c_{2}\right) \leq u\left[\alpha c_{1}+(1-\alpha) c_{2}\right] .
$$

Thus, u is concave.
4. Consider the insurance problem presented in class. There are two states of the world: high (h) and low (ℓ), and the probability of ℓ is μ. Without insurance, consumption at h is w_{h} and at ℓ is w_{ℓ} with $w_{\ell}<w_{h}$. One unit of insurance pays 1 at ℓ but charges premium p. The agent chooses how much insurance to buy, and, with x units of insurance, consumption levels are

$$
c_{h}=w_{h}-p x \text { and } c_{\ell}=w_{\ell}+(1-p) x .
$$

The agent maximizes expected utility with utility function u and is strictly risk averse.
4.1 Suppose that $p=\mu$. Find the optimal x.

Solution. The maximization problem is

$$
\max _{x \geq 0}(1-\mu) u\left(w_{h}-p x\right)+\mu u\left[w_{\ell}+(1-p) x\right] .
$$

The FOC then implies

$$
\begin{equation*}
-(1-\mu) p u^{\prime}\left(w_{h}-p x\right)+\mu(1-p) u^{\prime}\left[w_{\ell}+(1-p) x\right] \leq 0, \tag{3}
\end{equation*}
$$

with equality whenever $x>0$.
Thus, when $p=\mu$, this implies

$$
\begin{equation*}
-u^{\prime}\left(w_{h}-p x\right)+u^{\prime}\left[w_{\ell}+(1-p) x\right] \leq 0 . \tag{4}
\end{equation*}
$$

Now, since $w_{h}>w_{\ell}$,

$$
x^{*}=w_{h}-w_{\ell}>0
$$

solve (4) and is unique.
4.2 Show that there exists an upper bound $\bar{p}<1$ on the premium such that for all $p \geq \bar{p}$, optimal $x=0$.

Solution. Let \bar{p} be determined by

$$
\frac{\bar{p}}{1-\bar{p}}=\frac{\mu u^{\prime}\left(w_{\ell}\right)}{(1-\mu) u^{\prime}\left(w_{h}\right)} .
$$

Then, for any $p \geq \bar{p},(3)$ is satisfied with $x=0$.

