Expected utility theory exercises

Tai-Wei Hu

Solutions

1. Consider the expected utility theory presented in class, but with $C = \{c_1, c_2, c_3\}$. We assume that $c_1 \prec c_3$.

1.1 Show that if there is a function $u:C\to \mathbb{R}$ such that

$$\mu \preceq \mu'$$
 if and only if $\sum_{i=1}^{n} \mu(c_i)u(c_i) \leq \sum_{i=1}^{n} \mu'(c_i)u(c_i),$ (1)

then \precsim satisfies (EU1)-(EU3).

Solution. I only show (EU2) and (EU3). For (EU3), since u represents \succ , we have

$$\sum_{i=1}^{3} \mu_1(c_i)u(c_i) < \sum_{i=1}^{3} \mu_2(c_i)u(c_i) < \sum_{i=1}^{3} \mu_3(c_i)u(c_i).$$

If we let

$$\alpha = \frac{\sum_{i=1}^{3} \mu_3(c_i) u(c_i) - \sum_{i=1}^{3} \mu_2(c_i) u(c_i)}{\sum_{i=1}^{3} \mu_3(c_i) u(c_i) - \sum_{i=1}^{3} \mu_1(c_i) u(c_i)},$$

then it is straightforward to verify that

$$\sum_{i=1}^{3} \mu_2(c_i)u(c_i) = \alpha \left(\sum_{i=1}^{3} \mu_1(c_i)u(c_i)\right) + (1-\alpha) \left(\sum_{i=1}^{3} \mu_3(c_i)u(c_i)\right),$$

and hence (EU3) follows from representation.

Now consider (EU2). Suppose that $\mu_1 \prec \mu_2$. Then,

$$\sum_{i=1}^{3} \mu_1(c_i)u(c_i) < \sum_{i=1}^{3} \mu_2(c_i)u(c_i).$$

Hence,

$$\alpha \sum_{i=1}^{3} \mu_1(c_i)u(c_i) + (1-\alpha) \sum_{i=1}^{3} \mu_3(c_i)u(c_i) < \alpha \sum_{i=1}^{3} \mu_2(c_i)u(c_i) + (1-\alpha) \sum_{i=1}^{3} \mu_3(c_i)u(c_i).$$

Similarly, if $\alpha \mu_1 + (1 - \alpha)mu_3 \prec \alpha \mu_2 + (1 - \alpha)\mu_3$ and $\alpha < 1$, then

$$\alpha \sum_{i=1}^{3} \mu_1(c_i)u(c_i) + (1-\alpha) \sum_{i=1}^{3} \mu_3(c_i)u(c_i) < \alpha \sum_{i=1}^{3} \mu_2(c_i)u(c_i) + (1-\alpha) \sum_{i=1}^{3} \mu_3(c_i)u(c_i)$$

which implies that

$$\alpha \sum_{i=1}^{3} \mu_1(c_i) u(c_i) < \alpha \sum_{i=1}^{3} \mu_2(c_i) u(c_i),$$

and, dividing both sides by α , this implies that $\mu_1 \prec \mu_2$.

1.2 Suppose that \preceq satisfies (EU1)-(EU3). Construct u as in class with $u(c_3) = 1$ and $u(c_1) = 0$. Show that (1) holds with the following steps.

(a) Show that $\alpha c_3 + (1 - \alpha)c_1 \prec \alpha' c_3 + (1 - \alpha')c_1$ if and only if $\alpha < \alpha'$.

Solution. We use δ_{c_i} to denote the lottery that concentrates on c_i . Suppose that $\alpha < \alpha'$. Then,

$$\delta_{c_3} = \alpha \delta_{c_3} + (1 - \alpha) \delta_{c_3} \succ \alpha \delta_{c_3} + (1 - \alpha) \delta_{c_1}, \tag{2}$$

where the preference follows from (EU2) and $c_3 \succ c_1$. Now,

$$\begin{aligned} &\alpha'\delta_{c_3} + (1-\alpha')\delta_{c_1} \\ &= \frac{\alpha'-\alpha}{1-\alpha}\delta_{c_3} + \left(1-\frac{\alpha'-\alpha}{1-\alpha}\right)\left[\alpha\delta_{c_3} + (1-\alpha)\delta_{c_1}\right] \\ &\succ \frac{\alpha'-\alpha}{1-\alpha}\left[\alpha\delta_{c_3} + (1-\alpha)\delta_{c_1}\right] + \left(1-\frac{\alpha'-\alpha}{1-\alpha}\right)\left[\alpha\delta_{c_3} + (1-\alpha)\delta_{c_1}\right] \\ &= \alpha\delta_{c_3} + (1-\alpha)\delta_{c_1}, \end{aligned}$$

where the strict preference follows from (EU2) and (2). The other direction is similar.

(b) For any $\mu \in \Delta(C)$, show that

$$\mu \sim [u(c_2)\mu(c_2) + \mu(c_3)]c_3 + [(1 - u(c_2))\mu(c_2) + \mu(c_1)]c_1.$$

Solution.

$$\mu = \mu(c_2)\delta_{c_2} + (1 - \mu(c_2)) \left[\frac{\mu(c_1)}{1 - \mu(c_2)} \delta_{c_1} + \frac{\mu(c_3)}{1 - \mu(c_2)} \delta_{c_3} \right]$$

$$\sim \mu(c_2)[u(c_2)\delta_{c_3} + (1 - u(c_2))\delta_{c_1}] + (1 - \mu(c_2)) \left[\frac{\mu(c_1)}{1 - \mu(c_2)} \delta_{c_1} + \frac{\mu(c_3)}{1 - \mu(c_2)} \delta_{c_3} \right]$$

$$= [u(c_2)\mu(c_2) + \mu(c_3)]\delta_{c_3} + [(1 - u(c_2))\mu(c_2) + \mu(c_1)]\delta_{c_1},$$

where the indifference follows from (EU2).

(c) Show that the result follows from (a) and (b) and that $\mathbb{E}_{\mu}(u) = u(c_2)\mu(c_2) + \mu(c_3)$. Solution. The result is immediate.

2. Show that the set of simple lotteries, $\Delta(\mathbb{R}_+)$, is closed under compound lottery, that is, if μ_1 and μ_2 are simple lotteries and $\alpha \in (0, 1)$, then $\alpha \mu_1 + (1 - \alpha)\mu_2$ is well-defined and is itself a simple lottery.

Solution. Let μ_1 and μ_2 be two simple lotteries, and let

$$C = \{ c \in \mathbb{R}_+ : \mu_1(c) > 0 \text{ or } \mu_2(c) > 0 \}.$$

Clearly, C is also a finite set. This shows that $\alpha \mu_1 + (1 - \alpha)\mu_2$ is also a simple lottery

- **3.** Show that if \preceq is a relation over $\Delta(\mathbb{R}_+)$ satisfying (EU1)-(EU3) represented by u, then
 - 1. \precsim satisfies MC iff u is strictly increasing;

Solution. If u is strictly increasing, then $c_1 > c_2$ implies tat $u(c_1) > u(c_2)$ and hence, $c_1 \succ c_2$. Thus, MC is satisfied. Similarly, if MC is satisfied and if $c_1 > c_2$, then $c_1 \succ c_2$ and hence $u(c_1) > u(c_2)$.

2. \precsim satisfies (strict) risk aversion iff u is (strictly) concave.

Solution. If u is concave, then for any μ , $\mathbf{E}_{\mu}[u(c)] \leq u[\mathbf{E}_{\mu}(c)]$ by Jensen's inequality, which implies $\mu \preceq \mathbb{E}_{\mu}(c)$, and hence \preceq satisfies risk aversion. Conversely, if \preceq satisfies risk aversion, then for any c_1, c_2 and any $\alpha \in (0, 1)$,

$$\alpha \delta_{c_1} + (1 - \alpha) \delta_{c_2} \precsim \delta_{\alpha c_1 + (1 - \alpha) c_2},$$

and hence

$$\alpha u(c_1) + (1 - \alpha)u(c_2) \le u[\alpha c_1 + (1 - \alpha)c_2].$$

Thus, u is concave.

4. Consider the insurance problem presented in class. There are two states of the world: high (h) and low (ℓ) , and the probability of ℓ is μ . Without insurance, consumption at h is w_h and at ℓ is w_ℓ with $w_\ell < w_h$. One unit of insurance pays 1 at ℓ but charges premium p. The agent chooses how much insurance to buy, and, with x units of insurance, consumption levels are

$$c_h = w_h - px$$
 and $c_\ell = w_\ell + (1 - p)x$.

The agent maximizes expected utility with utility function u and is strictly risk averse.

4.1 Suppose that $p = \mu$. Find the optimal x.

Solution. The maximization problem is

$$\max_{x \ge 0} (1-\mu)u(w_h - px) + \mu u[w_\ell + (1-p)x].$$

The FOC then implies

$$-(1-\mu)pu'(w_h - px) + \mu(1-p)u'[w_\ell + (1-p)x] \le 0,$$
(3)

with equality whenever x > 0.

Thus, when $p = \mu$, this implies

$$-u'(w_h - px) + u'[w_\ell + (1 - p)x] \le 0.$$
(4)

Now, since $w_h > w_\ell$,

$$x^* = w_h - w_\ell > 0$$

solve (4) and is unique.

4.2 Show that there exists an upper bound $\bar{p} < 1$ on the premium such that for all $p \ge \bar{p}$, optimal x = 0.

Solution. Let \bar{p} be determined by

$$\frac{\bar{p}}{1-\bar{p}} = \frac{\mu u'(w_\ell)}{(1-\mu)u'(w_h)}.$$

Then, for any $p \ge \overline{p}$, (3) is satisfied with x = 0.