
Expected utility theory exercises

Tai-Wei Hu

Solutions

1. Consider the expected utility theory presented in class, but with C = {c1, c2, c3}. We

assume that c1 ≺ c3.

1.1 Show that if there is a function u : C → R such that

µ - µ′ if and only if
n∑

i=1

µ(ci)u(ci) ≤
n∑

i=1

µ′(ci)u(ci), (1)

then - satisfies (EU1)-(EU3).

Solution. I only show (EU2) and (EU3). For (EU3), since u represents �, we have

3∑
i=1

µ1(ci)u(ci) <
3∑

i=1

µ2(ci)u(ci) <
3∑

i=1

µ3(ci)u(ci).

If we let

α =

∑3
i=1 µ3(ci)u(ci)−

∑3
i=1 µ2(ci)u(ci)∑3

i=1 µ3(ci)u(ci)−
∑3

i=1 µ1(ci)u(ci)
,

then it is straightforward to verify that

3∑
i=1

µ2(ci)u(ci) = α

(
3∑

i=1

µ1(ci)u(ci)

)
+ (1− α)

(
3∑

i=1

µ3(ci)u(ci)

)
,

and hence (EU3) follows from representation.

Now consider (EU2). Suppose that µ1 ≺ µ2. Then,

3∑
i=1

µ1(ci)u(ci) <
3∑

i=1

µ2(ci)u(ci).
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Hence,

α
3∑

i=1

µ1(ci)u(ci) + (1− α)
3∑

i=1

µ3(ci)u(ci) < α
3∑

i=1

µ2(ci)u(ci) + (1− α)
3∑

i=1

µ3(ci)u(ci).

Similarly, if αµ1 + (1− α)mu3 ≺ αµ2 + (1− α)µ3 and α < 1, then

α
3∑

i=1

µ1(ci)u(ci) + (1− α)
3∑

i=1

µ3(ci)u(ci) < α
3∑

i=1

µ2(ci)u(ci) + (1− α)
3∑

i=1

µ3(ci)u(ci)

which implies that

α

3∑
i=1

µ1(ci)u(ci) < α

3∑
i=1

µ2(ci)u(ci),

and, dividing both sides by α, this implies that µ1 ≺ µ2.

1.2 Suppose that - satisfies (EU1)-(EU3). Construct u as in class with u(c3) = 1 and

u(c1) = 0. Show that (1) holds with the following steps.

(a) Show that αc3 + (1− α)c1 ≺ α′c3 + (1− α′)c1 if and only if α < α′.

Solution. We use δci to denote the lottery that concentrates on ci. Suppose that α < α′.

Then,

δc3 = αδc3 + (1− α)δc3 � αδc3 + (1− α)δc1 , (2)

where the preference follows from (EU2) and c3 � c1. Now,

α′δc3 + (1− α′)δc1

=
α′ − α

1− α
δc3 +

(
1− α′ − α

1− α

)
[αδc3 + (1− α)δc1 ]

� α′ − α

1− α
[αδc3 + (1− α)δc1 ] +

(
1− α′ − α

1− α

)
[αδc3 + (1− α)δc1 ]

= αδc3 + (1− α)δc1 ,

where the strict preference follows from (EU2) and (2). The other direction is similar.

(b) For any µ ∈ ∆(C), show that

µ ∼ [u(c2)µ(c2) + µ(c3)]c3 + [(1− u(c2))µ(c2) + µ(c1)]c1.
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Solution.

µ = µ(c2)δc2 + (1− µ(c2))

[
µ(c1)

1− µ(c2)
δc1 +

µ(c3)

1− µ(c2)
δc3

]
∼ µ(c2)[u(c2)δc3 + (1− u(c2))δc1 ] + (1− µ(c2))

[
µ(c1)

1− µ(c2)
δc1 +

µ(c3)

1− µ(c2)
δc3

]
= [u(c2)µ(c2) + µ(c3)]δc3 + [(1− u(c2))µ(c2) + µ(c1)]δc1 ,

where the indifference follows from (EU2).

(c) Show that the result follows from (a) and (b) and that Eµ(u) = u(c2)µ(c2)+µ(c3).

Solution. The result is immediate.

2. Show that the set of simple lotteries, ∆(R+), is closed under compound lottery, that

is, if µ1 and µ2 are simple lotteries and α ∈ (0, 1), then αµ1 + (1 − α)µ2 is well-defined

and is itself a simple lottery.

Solution. Let µ1 and µ2 be two simple lotteries, and let

C = {c ∈ R+ : µ1(c) > 0 or µ2(c) > 0}.

Clearly, C is also a finite set. This shows that αµ1 + (1− α)µ2 is also a simple lottery

3. Show that if - is a relation over ∆(R+) satisfying (EU1)-(EU3) represented by u, then

1. - satisfies MC iff u is strictly increasing;

Solution. If u is strictly increasing, then c1 > c2 implies tat u(c1) > u(c2) and

hence, c1 � c2. Thus, MC is satisfied. Similarly, if MC is satisfied and if c1 > c2,

then c1 � c2 and hence u(c1) > u(c2).

2. - satisfies (strict) risk aversion iff u is (strictly) concave.

Solution. If u is concave, then for any µ, Eµ[u(c)] ≤ u[Eµ(c)] by Jensen’s inequality,

which implies µ - Eµ(c), and hence - satisfies risk aversion. Conversely, if -

satisfies risk aversion, then for any c1, c2 and any α ∈ (0, 1),

αδc1 + (1− α)δc2 - δαc1+(1−α)c2 ,
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and hence

αu(c1) + (1− α)u(c2) ≤ u[αc1 + (1− α)c2].

Thus, u is concave.

4. Consider the insurance problem presented in class. There are two states of the world:

high (h) and low (`), and the probability of ` is µ. Without insurance, consumption

at h is wh and at ` is w` with w` < wh. One unit of insurance pays 1 at ` but charges

premium p. The agent chooses how much insurance to buy, and, with x units of insurance,

consumption levels are

ch = wh − px and c` = w` + (1− p)x.

The agent maximizes expected utility with utility function u and is strictly risk averse.

4.1 Suppose that p = µ. Find the optimal x.

Solution. The maximization problem is

max
x≥0

(1− µ)u(wh − px) + µu[w` + (1− p)x].

The FOC then implies

−(1− µ)pu′(wh − px) + µ(1− p)u′[w` + (1− p)x] ≤ 0, (3)

with equality whenever x > 0.

Thus, when p = µ, this implies

−u′(wh − px) + u′[w` + (1− p)x] ≤ 0. (4)

Now, since wh > w`,

x∗ = wh − w` > 0

solve (4) and is unique.

4.2 Show that there exists an upper bound p̄ < 1 on the premium such that for all p ≥ p̄,

optimal x = 0.
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Solution. Let p̄ be determined by

p̄

1− p̄
=

µu′(w`)

(1− µ)u′(wh)
.

Then, for any p ≥ p̄, (3) is satisfied with x = 0.
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