Epistemic Logic and Applications

Tai-Wei Hu

University of Bristol

T-W Hu(Bristol U)	lecture 3	December 14, 2019 1/28
	Propositional logic	

Logical system

Logical inferences are crucial in game theoretical arguments

- derivation of best responses
- derivation of others' best responses and then equilibrium

Symmetry is an important assumption in social sciences

- the analyst assumes the subjects are symmetric to himself in many ways
- including the logical abilities

Logical inferences

Mathematical logic treats logical inferences as objects of study

- an inference is simply a sequence of symbols
- but follows a certain rules

Connection between provability and validity

- a statement is provable if there is a proof for it
- a statement is valid if it is true in all states of the world

T-W Hu(Bristol U)	lecture 3	December 14, 2019 3 / 28
	Propositional logic	

Propositional logic

Simplest setting to study logical inferences

- begins with a set of *elementary* or atomic propositions
- each statement consists of elementary statements connected by logical connectives

Belief operators to distinguish different players' scopes of thinking

- discuss logical inferences within each player's scope
- the analyst makes inference about the objective world

Propositions

A set of elementary propositions, \mathcal{P}_0

- typical element denoted by p, q, r
- interpreted as "indecomposable" propositions

A set of logical connectives

- ∨, or
- \wedge , and
- \neg , negation
- \Rightarrow , implication

T-W Hu(Bristol U)	lecture 3	December 14, 2019	5 / 28
	Propositional logic		

Propositions (cont.)

The set of all (well-formulated) propositions is defined by induction

- $\bullet \ \ \mathsf{base} \ \ \mathsf{is} \ \mathcal{P}_0$
- induction step: construct new propositions from previous layers by connection by logical connectives

Formally, the set ${\mathcal P}$ is generated by finite applications of:

- if $A \in \mathbf{P}_0$, then $p \in \mathcal{P}$
- if $A, B \in \mathcal{P}$, then $A \lor B, A \land B, \neg A, A \Rightarrow B \in \mathcal{P}$

Example: $p \Rightarrow (q \Rightarrow p)$ is constructed from

- first, $A = (q \Rightarrow p)$ from p and q
- then, $p \Rightarrow A$

Syntax vs Semantics

Syntax is concerned with the "form" of a proposition

- $p \wedge q$ and $q \wedge p$ are syntactically different
- but they seem to have the same meaning

Semantics is concerned with the "meaning" of a proposition

• formalized by truth assignment

T-W Hu(Bristol U)	lecture 3	December 14, 2019 7 / 28	}
	Completeness		

Truth assignment

A truth assignment is a function $\tau : \mathcal{P}_0 \to \{\top, \bot\}$

• \top means "true, \perp means "false"

 τ can then be extended to $\mathcal P$ by induction

- if $\tau(A) = \top$, or $\tau(B) = \top$, then $\tau(A \lor B) = \top$; o/w, $\tau(A \lor B) = \bot$
- if $\tau(A) = \top = \tau(B)$, then $\tau(A \land B) = \top$; o/w, $\tau(A \land B) = \bot$
- if $\tau(A) = \top$, then $\tau(\neg A) = \bot$; o/w , $\tau(A \lor B) = \top$
- if $\tau(A) = \bot$, or $\tau(B) = \top$, then $\tau(A \Rightarrow B) = \top$; o/w, $\tau(A \Rightarrow B) = \bot$

Validity

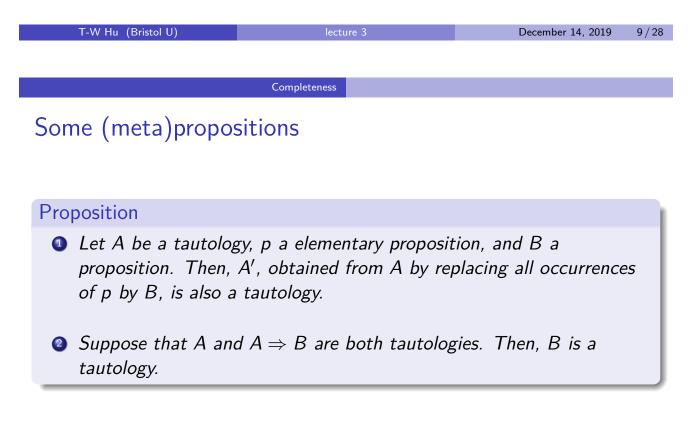
A proposition A is a *tautology* if

 $\tau(A) = \top$ under any truth assignment τ

Examples:

- $p \Rightarrow (q \Rightarrow p)$
- $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$
- $((\neg p) \Rightarrow (\neg q)) \Rightarrow (((\neg p) \Rightarrow q) \Rightarrow p)$

If $A \in \mathcal{P}$ contains *n* elementary propositions, how many verifications do you need to check validity of *A*?



• these are *meta*-propositions, propositions about propositional logic, *not* propositions within propositional logic

Examples

Let $A, B, C \in \mathcal{P}$; show that the followings are tautologies:

- $A \Rightarrow (B \Rightarrow A)$
- $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$
- $((\neg A) \Rightarrow (\neg B)) \Rightarrow (((\neg A) \Rightarrow B) \Rightarrow A)$

T-W Hu(Bristol U)	lecture 3	December 14, 2019 11 / 28
	Completeness	

Proof Theory

Formally, a proof is a sequence of propositions

- each item is either an axiom
- or follows from previous items a according to a *inference rule*

Axioms: let $A, B, C \in \mathcal{P}$

- L1 $A \Rightarrow (B \Rightarrow A)$
- L2 $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$
- L3 $((\neg A) \Rightarrow (\neg B)) \Rightarrow (((\neg A) \Rightarrow B) \Rightarrow A)$

Inference rule: from $A \Rightarrow B$ and A infer B (MP, modus ponens)

Completeness

Proof

A sequence of propositions, $\{A_1, A_2, ..., A_n\}$ is a *proof* of B if

- $A_n = B$
- for each i = 1, ..., n, either
 - A_i is an axiom, or
 - A_i is obtained from $A_{i'}$ and $A_{i''}$ using MP, i', i'' < i
- We use $\vdash B$ to denote the fact that B is provable

Let $\Gamma \subset \mathcal{P}$; we use $\Gamma \vdash B$ to denote the fact that

- there is proof for *B*, in which
- propositions in Γ can be used as axioms

T-W Hu(Bristol U)	lecture 3	December 14, 2019	13 / 28
	Completeness		

Examples

- For any $A \in \mathcal{P}$, the proposition $A \Rightarrow A$ is provable
- S1 let $B = (A \Rightarrow A)$; then, L2 implies $(A \Rightarrow (B \Rightarrow A)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow A))$
- S2 but L1 implies $A \Rightarrow ((A \Rightarrow A) \Rightarrow A)$, that is, $A \Rightarrow (B \Rightarrow A)$
- S3 then, from S1 and S2, MP implies $(A \Rightarrow B) \Rightarrow (A \Rightarrow A)$
- S4 L1 implies $A \Rightarrow (A \Rightarrow A)$, that is, $A \Rightarrow B$
- S5 from S3 and S4, MP implies $A \Rightarrow A$

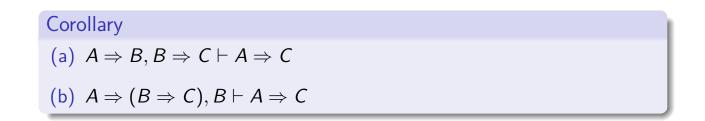
Completeness

Deduction Theorem

Theorem

Let $\Gamma \subset \mathcal{P}$ and $A, B \in \mathcal{P}$. If $\Gamma, A \vdash B$, then $\Gamma \vdash A \Rightarrow B$.

• as a corollary, $A \vdash B$ if and only if $\vdash A \Rightarrow B$



T-W Hu(Bristol U)	lecture 3	December 14, 2019	15 / 28
	Completeness		
Soundness Theoren	n		

Theorem If B is provable, then B is a tautology.

Completeness

Completeness Theorem

Theorem

If B is a tautology, then B is provable.

The proof uses the following lemma

Lemma

Let $A \in \mathcal{P}$ and let $B_1, ..., B_n$ be the elementary propositions that occur in A. For any truth assignment τ , define

$$B'_i = B_i$$
 if $\tau(B_i) = \top$, and $B'_i = \neg B_i$ if $\tau(B_i) = \bot$.

Similarly, define A' = A if $\tau(A) = \top$ and $A' = \neg A$ otherwise. Then,

$$B'_1, \ldots, B'_n \vdash A'.$$

T-W Hu(Bristol U)	lecture 3	December 14, 2019	17 / 28
	Completeness		

Consistency

The propositional logic is *consistent* in the sense that for any $B \in \mathcal{P}$, it cannot be the case that

$$\vdash B \text{ and } \vdash \neg B$$

A set of propositions, Γ , is *consistent* if, for any *B*, it is not the case that

$$\Gamma \vdash B$$
 and $\Gamma \vdash \neg B$

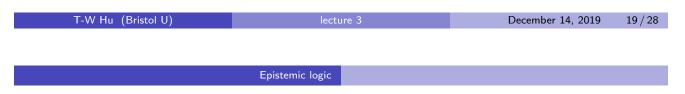
Epistemic logic

A framework for formal epistemology

- different thinking scopes for different individuals
- describing different individuals' beliefs
- describe different individuals' inferences

Potential applications to game theory and economics

- formalize the notion "common knowledge" or the lack of it
- formalize bounded interpersonal reasoning, e.g., level-k theory



Belief operators

Set of individuals (players): i = 1, ..., N

- each player is capable of logical inferences
- we use \mathbf{B}_i , the belief operator, to describe the scope of *i*'s thinking

Set of propositions, \mathcal{L} :

- if A and B are propositions, so are $A \Rightarrow B$, $A \Rightarrow B$, $\neg A$, and $A \land B$
- if A is a proposition, so is $\mathbf{B}_i(A)$

For example, $\mathbf{B}_1(\mathbf{B}_2(A))$ is a proposition

• it describes player 1's belief about player 2's belief

This is a finite language, but includes higher order beliefs of arbitrary orders

Epistemic proof theory

Axioms for propositional logic, (L1)-(L3), and MP

• all tautologies are provable

Epistemic axioms: for all i = 1, ..., N

$$\mathsf{K} \; \mathbf{B}_i(A \Rightarrow B) \Rightarrow (\mathbf{B}_i(A) \Rightarrow \mathbf{B}_i(B))$$

$$\mathsf{D} \neg \mathsf{B}_i(A \land \neg A)$$

Epistemic inference rule: Nec from A infer $\mathbf{B}_i(A)$

- axiom K and rule Nec ensure that the player has perfect logical ability
- axiom D ensures that player *i*'s beliefs are consistent

Epistemic logic	T-W Hu(Bristol U)	lecture 3	December 14, 2019	21 / 28
Epistemic logic				
Epistemic logic				
		Epistemic logic		

Kripke semantics

Extends the truth assignment τ to belief operators

- to do so, need to have a scope for each player
- Kripke semantics uses connection between different possible worlds to model the scopes

A Kripke model is a list $M = (W, P_1, ..., P_N, \tau)$

- set of possible worlds, W (set of states)
- accessibility relation for each i, P_i (possibility relation)
- truth valuation: $\tau: W \times \mathcal{P}_0 \rightarrow \{\top, \bot\}$

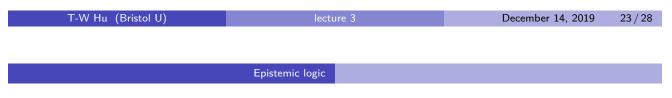
Epistemic logic

Truth evaluation

The function τ is extended to $W \times \mathcal{L}$ as follows:

- $\tau(w, A) = \top$ iff $\tau(w, \neg A) = \bot$
- $\tau(w, A \land B) = \top$ iff $\tau(w, A) = \top = \tau(w, B)$
- $\tau(w, A \Rightarrow B) = \top$ iff $\tau(w, A) = \bot$ or $\tau(w, B) = \top$
- $\tau(w, \mathbf{B}_i(A)) = \top$ iff $\tau(v, A) = \top$ for all v such that $(w, v) \in P_i$

A is valid (denoted $\models_M A$) under M iff $\tau(w, A) = \top$ for all w



Some meta-theorems

A proposition A is non-epistemic if it does not contain any belief operator

Theorem

- (a) Let A be a non-epistemic proposition. Then, A is valid under any M if and only if A is a tautology.
- (b) Let $A \in \mathcal{L}$ and let M be a model. If A is valid under M, so is $\mathbf{B}_i(A)$.
- (c) Let $A, B \in \mathcal{L}$ and let M be a model. Then, $\mathbf{B}_i(A \Rightarrow B) \Rightarrow (\mathbf{B}_i(A) \Rightarrow \mathbf{B}_i(B))$ is valid under M.

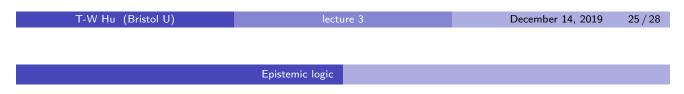
Construct a model M such that $\mathbf{B}_i(p \wedge \neg p)$ is valid under M

Completeness theorem

A model *M* is *serial* if for all *i* and for all $w \in W$, there exists *v* such that $(w, v) \in P_i$

Theorem

For any proposition $A \in \mathcal{L}$, $\vdash A$ if and only if $\models_M A$ for any M that is serial.



Other epistemic axioms

- $\top \mathbf{B}_i(A) \Rightarrow A$
- 4 $\mathbf{B}_i(A) \Rightarrow \mathbf{B}_i(\mathbf{B}_i(A))$
- 5 $\neg \mathbf{B}_i(A) \Rightarrow \mathbf{B}_i(\neg \mathbf{B}_i(A))$

Interpretations

- axiom T connects playeri's belief to the outer world
- axioms 4 and 5 impose introspection, positive and negative

In the literature

- \bullet system with K+T+4 is called S4 system
- system with K+T+5 is called S5 system, or *partition model*

Completeness theorem for S4 and S5

A model M is called

- transitive if for all i and u, v, w ∈ W, (u, v) ∈ P_i and (v, w) ∈ P_i imply (u, w) ∈ P_i
- reflexive if for all i and $w \in W$, $(w, w) \in P_i$
- euclidean if for all i and $u, v, w \in W$, $(u, v) \in P_i$ and $(u, w) \in P_i$ imply $(v, w) \in P_i$

Note that P_i is an equivalence relation if and only if it is transitive, reflexive, and euclidean

