Normal-from games

Tai-Wei Hu

University of Bristol

2-person normal-form game

A 2-person normal form game is given as a triple:

$$
G=\left(N,\left\{S_{i}\right\}_{i \in N},\left\{h_{i}\right\}_{i \in N}\right),
$$

where
(1): $N=\{1,2\}-$ the set of players;
(2): $S_{i}=\left\{\mathbf{s}_{i 1}, \ldots, \mathbf{s}_{i \ell_{i}}\right\}$ - the set of pure strategies for player $i=1,2$;
(3): $h_{i}: S_{1} \times S_{2} \rightarrow \mathbb{R}$ - the payoff function of player $i=1,2$.

Matrix form

A 2-person normal form game $G=\left(N,\left\{S_{i}\right\}_{i \in N},\left\{h_{i}\right\}_{i \in N}\right)$ is often described by a matrix form:

	Prisoner's Dilemma				Matching Pennies	
	\mathbf{s}_{21}	\mathbf{s}_{22}		\mathbf{s}_{21}	\mathbf{s}_{22}	
\mathbf{s}_{11}	$(5,5)$	$(1,6)$	\mathbf{s}_{11}	$(1,-1)$	$(-1,1)$	
\mathbf{s}_{12}	$(6,1)$	$(3,3)$				
			\mathbf{s}_{12}	$(-1,1)$	$(1,-1)$	

2-person 0-sum games

Zero-sum game

We say that a 2-person game is zero-sum iff

$$
\begin{equation*}
h_{1}\left(s_{1}, s_{2}\right)+h_{2}\left(s_{1}, s_{2}\right)=0 \text { for all }\left(s_{1}, s_{2}\right) \in S_{1} \times S_{2} . \tag{1}
\end{equation*}
$$

- in a zero-sum game, if h_{1} and h_{2} represent the preference relation \succsim_{1} and \succsim_{2} on $\Delta\left(S_{1} \times S_{2}\right)$, for any $p, q \in \Delta\left(S_{1} \times S_{2}\right)$,

$$
p \succsim_{1} q \Leftrightarrow q \succsim_{2} p
$$

Maximin decision criterion

Two-step evaluation:
(1): Player i evaluates each of his strategies by its worst possible payoff
(2): Player i maximizes the evaluation by controlling his strategies

Mathematically: for $i=1$,
$\left(1^{*}\right)$: for each $s_{1} \in S_{1}$, the evaluation of s_{1} is defined by $\min _{s_{2}} h_{1}\left(s_{1}, s_{2}\right)$;
$\left(2^{*}\right)$: Player 1 maximizes $\min _{s_{2}} h_{1}\left(s_{1}, s_{2}\right)$ by controlling s_{1}.
These two steps are expressed by

$$
\begin{equation*}
\max _{s_{1} \in S_{1}} \min _{s_{2} \in S_{2}} h_{1}\left(s_{1}, s_{2}\right)=\max _{s_{1} \in S_{1}}\left(\min _{s_{2} \in S_{2}} h_{1}\left(s_{1}, s_{2}\right)\right) . \tag{2}
\end{equation*}
$$

We say that s_{1}^{*} is a maximin strategy iff it is a solution of (2).

Example 1

Consider the following zero-sum game:

$$
\begin{array}{cccc}
& \mathbf{s}_{21} & \mathbf{s}_{22} & \min _{s_{2}} h_{1}\left(s_{1}, s_{2}\right) \\
\mathbf{s}_{11} & (5,-5) & (4,-4) & 4 \\
\mathbf{s}_{12} & (3,-3) & (6,-6) & 3 \\
\min _{s_{1}} h_{2}\left(s_{1}, s_{2}\right) & ? & ? &
\end{array}
$$

Maximization of h_{1} is equivalent to minimization of h_{2}, i.e.,

$$
\begin{equation*}
h_{1}\left(s_{1}, s_{2}\right) \rightarrow \max _{s_{1}} \quad \Longleftrightarrow \quad h_{2}\left(s_{1}, s_{2}\right) \rightarrow \min _{s_{1}} \tag{3}
\end{equation*}
$$

and minimization of h_{1} is equivalent to maximization of h_{2}, i.e.,

$$
\begin{equation*}
h_{1}\left(s_{1}, s_{2}\right) \rightarrow \min _{s_{2}} \Longleftrightarrow h_{2}\left(s_{1}, s_{2}\right) \rightarrow \max _{s_{2}} \tag{4}
\end{equation*}
$$

Maximin Criterion (cont.)

By (3) and (4), the maximin decision criterion for player 2 is then: $\left(1^{*}-2\right)$: for each $s_{2} \in S_{2}$, the evaluation of s_{2} is defined by $\max _{s_{1}} h_{1}\left(s_{1}, s_{2}\right)$; (2*-2): Player 2 minimizes $\max _{s_{1}} h_{1}\left(s_{1}, s_{2}\right)$ by controlling s_{2} Mathematically,

$$
\begin{equation*}
\min _{s_{2} \in S_{2}} \max _{s_{1} \in S_{1}} h_{1}\left(s_{1}, s_{2}\right)=\min _{s_{2} \in S_{2}}\left(\max _{s_{1} \in S_{1}} h_{1}\left(s_{1}, s_{2}\right)\right) \tag{5}
\end{equation*}
$$

Lemma

$$
\max _{s_{1} \in S_{1}} \min _{s_{2} \in S_{2}} h_{1}\left(s_{1}, s_{2}\right) \leq \min _{s_{2} \in S_{2}} \max _{s_{1} \in S_{1}} h_{1}\left(s_{1}, s_{2}\right) .
$$

In the following example, the assertion of Lemma 1 holds in inequality.

Example

Consider the zero-sum game

	\mathbf{s}_{21}	\mathbf{s}_{22}	$\min _{s_{2}} h_{1}\left(s_{1}, s_{2}\right)$
\mathbf{s}_{11}	$5(-5)$	$3(-3)$	3
\mathbf{s}_{12}	$2(-2)$	$6(-6)$	2
$\max _{s_{1}} h_{1}\left(s_{1}, s_{2}\right)$	5	6	$\max _{s_{1}} \min _{s_{2}} h_{1}\left(s_{1}, s_{2}\right)=3$ $\min _{s_{2}} \max _{s_{1}} h_{1}\left(s_{1}, s_{2}\right)=5$

In the following example, the assertion of Lemma 1 holds in equality.

Example

Consider the zero-sum game

	\mathbf{s}_{21}	\mathbf{s}_{22}	$\min _{s_{2}} h_{1}\left(s_{1}, s_{2}\right)$
\mathbf{s}_{11}	5	3	3
\mathbf{s}_{12}	6	4	4
$\max _{s_{1}} h_{1}\left(s_{1}, s_{2}\right)$	6	4	
$\max _{s_{2}} \max _{s_{1}} h_{1}\left(s_{1}, s_{2}\right)=4$			

Example

The Scissors-Rock-Paper game

	Sc	Ro	Pa
Sc	0	-1	1
Ro	1	0	-1
Pa	-1	1	0

Calculate the maximin value and minimax value.

Strictly Determined Games

Definition

A 2-person zero-sum game $G=\left(N,\left\{S_{i}\right\}_{i \in N},\left\{h_{i}\right\}_{i \in N}\right)$ is strictly determined iff

$$
\begin{equation*}
\max _{s_{1} \in S_{1}} \min _{s_{2} \in S_{2}} h_{1}\left(s_{1}, s_{2}\right)=\min _{s_{2} \in S_{2}} \max _{s_{1} \in S_{1}} h_{1}\left(s_{1}, s_{2}\right) \tag{6}
\end{equation*}
$$

Mixed strategies

As seen above, not all zero-sum games have equilibrium

- mathematically, the issue is lack of convexity
von Neumann (1928) introduced mixed strategies
- the mixed extension of G is to replace S_{i} by $M_{i}=\Delta\left(S_{i}\right)$
- h_{i} is the von Neumann-Morgenstern expected utility indices over $\Delta\left(S_{1} \times S_{2}\right)$

Three interpretations of mixed strategies

- as implemented with randomized devices
- as beliefs over other's strategies
- as unpredictable strategies

Equivalence

Theorem

The following statements are equivalent.
(1) The game G has an equilibrium point.
(2) $\max _{m_{1} \in M_{1}} \min _{m_{2} \in M_{2}} h_{1}\left(m_{1}, m_{2}\right)=\min _{m_{2} \in M_{2}} \max _{m_{1} \in M_{1}} h_{1}\left(m_{1}, m_{2}\right)$.
(3) There exist $m_{1}^{*} \in M_{1}$ and $m_{2}^{*} \in M_{2}$ and $v \in \mathbb{R}$ such that

$$
\begin{align*}
& h_{1}\left(m_{1}^{*}, s_{2}\right) \geq v \text { for all } s_{2} \in S_{2} \tag{7}\\
& h_{1}\left(s_{1}, m_{2}^{*}\right) \leq v \text { for all } s_{1} \in S_{1} \tag{8}
\end{align*}
$$

The Minimax Theorem

Theorem

Let \hat{G} be the mixed extension of a 2-person 0 -sum game G. Then,

$$
\begin{equation*}
\max _{m_{1} \in M_{1}} \min _{m_{2} \in M_{2}} h_{1}\left(m_{1}, m_{2}\right)=\min _{m_{2} \in M_{2}} \max _{m_{1} \in M_{1}} h_{1}\left(m_{1}, m_{2}\right) \tag{9}
\end{equation*}
$$

Proof using linear programming

Assume that $h_{1}\left(s_{1}, s_{2}\right)>0$ for all $\left(s_{1}, s_{2}\right)$; consider the following problem:

$$
\begin{equation*}
\min _{\left\{u_{s_{1}}: s_{1} \in S_{1}\right\}} \sum_{s_{1} \in S_{1}} u_{s_{1}} \tag{10}
\end{equation*}
$$

s.t. $\quad u_{s_{1}} \geq 0$ for all $s_{1} \in S_{1}, \quad \sum_{s_{1} \in S_{1}} u_{s_{1}} h_{1}\left(s_{1}, s_{2}\right) \geq 1$ for all $s_{2} \in S \not\{11)$

Lemma

(1) There exists $\left\{u_{s_{1}}: s_{1} \in S_{1}\right\}$ that satisfies (10)
(2) If $\left\{u_{s_{1}}^{*}: s_{1} \in S_{1}\right\}$ solves (10)-(11), then $m_{1} \in M_{1}$ defined as

$$
m_{1}^{*}\left(s_{1}\right)=\frac{u_{s_{1}}^{*}}{\sum_{s_{1} \in s_{1}} u_{s_{1}}^{*}}
$$

solves the Maximin criterion.

Nash equilibrium

N-Person Normal Form Games

A N -person normal form game is given as a triple:

$$
G=\left(N,\left\{S_{i}\right\}_{i \in N},\left\{h_{i}\right\}_{i \in N}\right)
$$

where
(1): $N=\{1,2, \ldots, N\}$-the set of players;
(2): $S_{i}=\left\{\mathbf{s}_{i 1}, \ldots, \mathbf{s}_{i \ell_{i}}\right\}$-the set of pure strategies for player $i=1,2, \ldots, N$;
(3): $h_{i}: S_{1} \times S_{2} \rightarrow \mathbb{R}$-the payoff function of player $i=1,2, \ldots, N$.

The following is the famous theorem due to John F. Nash.

Theorem (Nash (1951))

Let $G=\left(N,\left\{S_{i}\right\}_{i \in N},\left\{h_{i}\right\}_{i \in N}\right)$ be a N-person finite normal form game. Then, the mixed extension $\hat{G}=\left(N,\left\{\Delta\left(S_{i}\right)\right\}_{i \in N},\left\{h_{i}\right\}_{i \in N}\right)$ has a Nash equilibrium.

Theorem 9 is proved by applying Brouwer's fixed point theorem (or Kakutani's fixed point theorem)

Euclidean space

R^{m}, m-dimensional Euclidean space, has metric d

$$
d(x, y)=\sqrt{\sum_{t=1}^{m}\left(x_{t}-y_{t}\right)^{2}} \text { for } x, y \in R^{m}
$$

A sequence $\left\{x^{\nu}\right\}$ converges to x^{0}, denoted by $x^{\nu} \rightarrow x^{0}$, if the sequence $\left\{d\left(x^{\nu}, x^{0}\right)\right\}$ converges to 0

Compactness

Two topological notions:

- $T \subseteq R^{m}$ is closed if for any sequence $\left\{x^{\nu}\right\}$ in $T,\left\{x^{\nu}\right\} \rightarrow x^{0}$ implies that $x^{0} \in T$
- $T \subseteq R^{m}$ is bounded if there is a number M such that $d(0, x) \leq M$ for all $x \in T$
$T \in R^{m}$ is compact iff T is closed and bounded
- the interval $[0,1]$ is compact
- the m-dimensional simplex is compact

Convexity and continuity

$T \subset \mathbb{R}^{m}$ is convex if for any $x, y \in T$ and $\lambda \in[0,1]$, the convex combination $\lambda x+(1-\lambda) y \in T$

A function $f: T \rightarrow T$ is continuous if for any sequence $\left\{x^{\nu}\right\}$ in T, $x^{\nu} \rightarrow x^{0}$, then $f\left(x^{\nu}\right) \rightarrow f\left(x^{0}\right)$

Brouwer's fixed point theorem

Theorem (Brouwer (1908))

Let T be a nonempty compact convex subset of R^{m}, and let f be a continuous function from T to T. Then f has a fixed point x^{0} in T, i.e., $f\left(x^{0}\right)=x^{0}$.

Interpretations

Steady-state interpretation
Ex ante decision-making

Prediction and undecidability

Nash Noncooperative Theory

Prediction/decision making in game theory

Payoff interdependence

- one player's optimal choice depends on other players' actions
- prediction about others' actions crucial to one's decision

Battle of Sexes

	Board Game	Hiking
Board Game	(3, 2)	(0, 0)
Hiking	$(0,0)$	$(2,3)$

How to make predictions?

Give up making predictions

- dominant strategy criterion, default choice

Prediction by induction from past experiences

- treating players as nature and use probability distributions
- evolutionary game theory/learning theory

Prediction by inferences

- infer others' actions from their preferences and decision methods
- ex ante prediction-making is a process of logical inferences

Nash Noncooperative Theory

Formal theory of inferences: proof theory

Proof theory treats "proofs" as mathematical objects

- a proof is a sequence of symbols, each element is either an axiom, or is derived from preceding elements following a rule
- a sentence A is provable, denoted by $\vdash A$, if a proof for A exists

Proof theory connected to model theory by completeness theorem - completeness: for all sentences A,
$\vdash A$ if and only if A is "true" in every model
Our proof theory approach highlights an undecidability result for prediction/decision making in games, using model theory as a tool

Logical inferences and interpersonal beliefs

Logical inferences in game situations

- ex ante considerations require subjective inference for each player
- one player's inference may require simulated inferences for others

Epistemic logic: proof-theoretical approach to prediction-making in games

- belief operators to model a player's subjective scope
- epistemic axioms to model simulated inferences

Players make decisions and predictions based on beliefs about preferences and decision criterion

Nash Noncooperative Theory

Prediction/decision criterion

Decision criterion based on payoff maximization w.r.t. predictions

- possible final decision if best response against predicted actions
- independent decision-making: take all predictions into account

Nash theory

- symmetric prediction/decision criterion
- prediction based on inference from other's decision criterion
- requires an infinite regress of beliefs

Can a player reach a final decision from this infinite regress?

Undecidability in prediction/decision making

Let Γ_{i} represent player i 's beliefs (or infinite regress) of preferences and decision criteria and let $I_{1}\left(s_{1}\right)$ mean " s_{1} is a possible final decision"

- Γ_{i} leads to decidability if for each s_{i},
- $\mathbf{B}_{i}\left(\Gamma_{i}\right) \vdash \mathbf{B}_{i}\left(l_{i}\left(s_{i}\right)\right)$ (positive decision), or
- $\mathbf{B}_{i}\left(\Gamma_{i}\right) \vdash \mathbf{B}_{i}\left(\neg l_{i}\left(s_{i}\right)\right)$ (negative decision)
- Γ_{i} leads to undecidability if for some s_{i},
- $\mathbf{B}_{i}\left(\Gamma_{i}\right) \nvdash \mathbf{B}_{i}\left(l_{i}\left(s_{i}\right)\right)$ and $\mathbf{B}_{i}\left(\Gamma_{i}\right) \nvdash \mathbf{B}_{i}\left(\neg l_{i}\left(s_{i}\right)\right)$

We characterize

- the class of games for which Nash theory leads to decidability
- the class of games for which Nash theory leads to undecidability

Nash Noncooperative Theory

Example: decidable case

	L	R_{1}	R_{2}
U	$(5,5)$	(1, 0)	$(1,0)$
D_{1}	$(0,1)$	($2,-2)$	$(-2,2)$
D_{2}	$(0,1)$	$(-2,2)$	$(2,-2)$

Under Nash theory,

- $\mathbf{B}_{1}\left(\Gamma_{1}\right) \vdash \mathbf{B}_{1}\left(l_{1}(U)\right)$
- $\mathbf{B}_{1}\left(\Gamma_{1}\right) \vdash \mathbf{B}_{1}\left(\neg l_{1}\left(D_{1}\right)\right) \wedge \mathbf{B}_{1}\left(\neg l_{1}\left(D_{2}\right)\right)$

Example: undecidable case
$\left.\begin{array}{|l|l|l|}\hline & L & R \\ \hline U & \left(\begin{array}{lll}2 & 2\end{array}\right) & (0,0\end{array}\right)$

Under Nash theory,

- $\mathbf{B}_{1}\left(\Gamma_{1}\right) \nvdash \mathbf{B}_{1}\left(l_{1}(U)\right), \mathbf{B}_{1}\left(\Gamma_{1}\right) \nvdash \mathbf{B}_{1}\left(\neg I_{1}(U)\right)$
- $\mathbf{B}_{1}\left(\Gamma_{1}\right) \nvdash \mathbf{B}_{1}\left(l_{1}(D)\right), \mathbf{B}_{1}\left(\Gamma_{1}\right) \nvdash \mathbf{B}_{1}\left(\neg l_{1}(D)\right)$

Nash Theory

Nash solution of noncooperative games

$G=\left\langle\{1,2\},\left\{S_{1}, S_{2}\right\},\left\{h_{1}, h_{2}\right\}\right\rangle$, a two-person finite game

- $E \subseteq S_{1} \times S_{2}$ is interchangeable iff $E=E_{1} \times E_{2} \neq \emptyset$
- interchangeability captures independence of players' decision-making
- E_{i} describes player i's decisions and E_{j} describes his predictions

Solvable and unsolvable games (Nash, 1951)

- G is solvable if $E(G)$ (the set of Nash equilibria) is interchangeable and $E(G)$ is the solution
- otherwise, G is unsolvable
- maximal $E \subseteq E(G)$ satisfying interchangeability is a subsolution

Decision criterion for Nash solutions

A candidate solution $E=E_{1} \times E_{2} \subset S$ satisfies
\mathbf{N}_{1} If $s_{1} \in E_{1}$, then s_{1} is a best response against all $s_{2} \in E_{2}$;
\mathbf{N}_{2} If $s_{2} \in E_{2}$, then s_{2} is a best response against all $s_{1} \in E_{1}$.

- for player $1, E_{1}$ describes his "good" decisions and E_{2} his predictions
- N_{2} and N_{2} can be viewed as a system of simultaneous equations

Prediction and interpersonal beliefs

In $N_{1}-N_{2}$ there is no distinction between decisions and predictions

- E_{1} occurs in the scope of $\mathbf{B}_{1}(\cdot)$
- E_{2} occurs in the scope of $\mathbf{B}_{1} \mathbf{B}_{2}(\cdot)$

Derivation using $N_{1}-N_{2}$ requires the following infinite regress (from player 1's perspective):

$\mathbf{B}_{1}\left(\mathrm{~N}_{1}\right)$		$\mathbf{B}_{1} \mathbf{B}_{2} \mathbf{B}_{1}\left(\mathrm{~N}_{1}\right)$		$\cdots \cdots \cdots \cdot$
\downarrow	\nearrow	\downarrow	\nearrow	\downarrow
$\mathbf{B}_{1} \mathbf{B}_{2}\left(\mathrm{~N}_{2}\right)$		$\mathbf{B}_{1} \mathbf{B}_{2} \mathbf{B}_{1} \mathbf{B}_{2}\left(\mathrm{~N}_{2}\right)$		$\cdots \cdots \cdot \cdot$

