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2-person 0-sum games

2-person normal-form game

A 2-person normal form game is given as a triple:

G = (N, {Si}i∈N , {hi}i∈N),

where

(1): N = {1, 2}− the set of players;

(2): Si = {si1, ..., si`i} − the set of pure strategies for player i = 1, 2;

(3): hi : S1 × S2 → R − the payoff function of player i = 1, 2.
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2-person 0-sum games

Matrix form

A 2-person normal form game G = (N, {Si}i∈N , {hi}i∈N) is often
described by a matrix form:

Prisoner’s Dilemma Matching Pennies

s21 s22
s11 (5, 5) (1, 6)

s12 (6, 1) (3, 3)

s21 s22
s11 (1,−1) (−1, 1)

s12 (−1, 1) (1,−1)
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2-person 0-sum games

Zero-sum game

We say that a 2-person game is zero-sum iff

h1(s1, s2) + h2(s1, s2) = 0 for all (s1, s2) ∈ S1 × S2. (1)

in a zero-sum game, if h1 and h2 represent the preference relation %1
and %2 on ∆(S1 × S2), for any p, q ∈ ∆(S1 × S2),

p %1 q ⇔ q %2 p
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2-person 0-sum games Maximin Decision Criterion

Maximin decision criterion

Two-step evaluation:
(1): Player i evaluates each of his strategies by its worst possible payoff

(2): Player i maximizes the evaluation by controlling his strategies

Mathematically: for i = 1,

(1∗): for each s1 ∈ S1, the evaluation of s1 is defined by mins2 h1(s1, s2);

(2∗): Player 1 maximizes mins2 h1(s1, s2) by controlling s1.

These two steps are expressed by

max
s1∈S1

min
s2∈S2

h1(s1, s2) = max
s1∈S1

( min
s2∈S2

h1(s1, s2)). (2)

We say that s∗1 is a maximin strategy iff it is a solution of (2).
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2-person 0-sum games Maximin Decision Criterion

Example 1
Consider the following zero-sum game:

s21 s22 mins2 h1(s1, s2)
s11 (5,−5) (4,−4) 4

s12 (3,−3) (6,−6) 3

mins1 h2(s1, s2) ? ?

Maximization of h1 is equivalent to minimization of h2, i.e.,

h1(s1, s2) → max
s1

⇐⇒ h2(s1, s2) → min
s1

(3)

and minimization of h1 is equivalent to maximization of h2, i.e.,

h1(s1, s2) → min
s2

⇐⇒ h2(s1, s2) → max
s2

. (4)
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2-person 0-sum games Maximin Decision Criterion

Maximin Criterion (cont.)

By (3) and (4), the maximin decision criterion for player 2 is then:

(1∗-2): for each s2 ∈ S2, the evaluation of s2 is defined by maxs1 h1(s1, s2);

(2∗-2): Player 2 minimizes maxs1 h1(s1, s2) by controlling s2

Mathematically,

min
s2∈S2

max
s1∈S1

h1(s1, s2) = min
s2∈S2

(max
s1∈S1

h1(s1, s2)). (5)
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2-person 0-sum games Maximin Decision Criterion

Lemma

maxs1∈S1 mins2∈S2 h1(s1, s2) ≤ mins2∈S2 maxs1∈S1 h1(s1, s2).
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2-person 0-sum games Maximin Decision Criterion

In the following example, the assertion of Lemma 1 holds in inequality.

Example
Consider the zero-sum game

s21 s22 mins2 h1(s1, s2)
s11 5 (−5) 3 (−3) 3

s12 2 (−2) 6 (−6) 2
maxs1 mins2 h1(s1, s2) = 3

maxs1 h1(s1, s2) 5 6 mins2 maxs1 h1(s1, s2) = 5
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2-person 0-sum games Maximin Decision Criterion

In the following example, the assertion of Lemma 1 holds in equality.

Example
Consider the zero-sum game

s21 s22 mins2 h1(s1, s2)
s11 5 3 3

s12 6 4 4
maxs1 mins2 h1(s1, s2) = 4

maxs1 h1(s1, s2) 6 4 mins2 maxs1 h1(s1, s2) = 4
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2-person 0-sum games Maximin Decision Criterion

Example
The Scissors-Rock-Paper game

Sc Ro Pa
Sc 0 −1 1

Ro 1 0 −1

Pa −1 1 0

Calculate the maximin value and minimax value.
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2-person 0-sum games Maximin Decision Criterion

Strictly Determined Games

Definition
A 2-person zero-sum game G = (N, {Si}i∈N , {hi}i∈N) is strictly
determined iff

max
s1∈S1

min
s2∈S2

h1(s1, s2) = min
s2∈S2

max
s1∈S1

h1(s1, s2). (6)
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2-person 0-sum games Maximin Decision Criterion

Mixed strategies
As seen above, not all zero-sum games have equilibrium

mathematically, the issue is lack of convexity

von Neumann (1928) introduced mixed strategies
the mixed extension of G is to replace Si by Mi = ∆(Si)

hi is the von Neumann-Morgenstern expected utility indices over
∆(S1 × S2)

Three interpretations of mixed strategies
as implemented with randomized devices

as beliefs over other’s strategies

as unpredictable strategies
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2-person 0-sum games Maximin Decision Criterion

Equivalence

Theorem
The following statements are equivalent.

1 The game G has an equilibrium point.
2 maxm1∈M1 minm2∈M2 h1(m1,m2) = minm2∈M2 maxm1∈M1 h1(m1,m2).
3 There exist m∗

1 ∈ M1 and m∗
2 ∈ M2 and v ∈ R such that

h1(m∗
1, s2) ≥ v for all s2 ∈ S2; (7)

h1(s1,m∗
2) ≤ v for all s1 ∈ S1. (8)

T-W Hu (Bristol U) lecture 3 December 14, 2019 14 / 37



2-person 0-sum games Maximin Decision Criterion

The Minimax Theorem

Theorem

Let Ĝ be the mixed extension of a 2-person 0-sum game G. Then,

max
m1∈M1

min
m2∈M2

h1(m1,m2) = min
m2∈M2

max
m1∈M1

h1(m1,m2). (9)
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2-person 0-sum games Maximin Decision Criterion

Proof using linear programming

Assume that h1(s1, s2) > 0 for all (s1, s2); consider the following problem:

min
{us1 :s1∈S1}

∑
s1∈S1

us1 (10)

s.t. us1 ≥ 0 for all s1 ∈ S1,
∑

s1∈S1

us1h1(s1, s2) ≥ 1 for all s2 ∈ S2(11)
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2-person 0-sum games Maximin Decision Criterion

Lemma

(1) There exists {us1 : s1 ∈ S1} that satisfies (10)

(2) If {u∗
s1 : s1 ∈ S1} solves (10)-(11), then m1 ∈ M1 defined as

m∗
1(s1) =

u∗
s1∑

s1∈S1
u∗

s1

solves the Maximin criterion.
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Nash equilibrium

N-Person Normal Form Games

A N-person normal form game is given as a triple:

G = (N, {Si}i∈N , {hi}i∈N),

where
(1): N = {1, 2, ...,N}—the set of players;

(2): Si = {si1, ..., si`i}—the set of pure strategies for player i = 1, 2, ...,N;

(3): hi : S1 × S2 → R—the payoff function of player i = 1, 2, ...,N.
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Nash equilibrium Existence

The following is the famous theorem due to John F. Nash.

Theorem (Nash (1951))

Let G = (N, {Si}i∈N , {hi}i∈N) be a N-person finite normal form game.
Then, the mixed extension Ĝ = (N, {∆(Si)}i∈N , {hi}i∈N) has a Nash
equilibrium.

Theorem 9 is proved by applying Brouwer’s fixed point theorem (or
Kakutani’s fixed point theorem)
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Nash equilibrium Existence

Euclidean space

Rm, m-dimensional Euclidean space, has metric d

d(x , y) =

√√√√ m∑
t=1

(xt − yt)2 for x , y ∈ Rm

A sequence {xν} converges to x0, denoted by xν → x0, if the sequence
{d(xν , x0)} converges to 0
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Nash equilibrium Existence

Compactness

Two topological notions:
T ⊆ Rm is closed if for any sequence {xν} in T , {xν} → x0 implies
that x0 ∈ T

T ⊆ Rm is bounded if there is a number M such that d(0, x) ≤ M for
all x ∈ T

T ∈ Rm is compact iff T is closed and bounded
the interval [0, 1] is compact

the m-dimensional simplex is compact
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Nash equilibrium Existence

Convexity and continuity

T ⊂ Rm is convex if for any x , y ∈ T and λ ∈ [0, 1], the convex
combination λx + (1 − λ)y ∈ T

A function f : T → T is continuous if for any sequence {xν} in T ,
xν → x0, then f (xν) → f (x0)
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Nash equilibrium Existence

Brouwer’s fixed point theorem

Theorem (Brouwer (1908))

Let T be a nonempty compact convex subset of Rm, and let f be a
continuous function from T to T . Then f has a fixed point x0 in T , i.e.,
f (x0) = x0.
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Interpretations

Interpretations

Steady-state interpretation

Ex ante decision-making
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Nash Noncooperative Theory

Prediction and undecidability
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Nash Noncooperative Theory

Prediction/decision making in game theory

Payoff interdependence

one player’s optimal choice depends on other players’ actions

prediction about others’ actions crucial to one’s decision

Battle of Sexes

Board Game Hiking
Board Game ( 3, 2) ( 0, 0)
Hiking ( 0, 0) ( 2, 3)
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Nash Noncooperative Theory

How to make predictions?

Give up making predictions
dominant strategy criterion, default choice

Prediction by induction from past experiences
treating players as nature and use probability distributions

evolutionary game theory/learning theory

Prediction by inferences
infer others’ actions from their preferences and decision methods

ex ante prediction-making is a process of logical inferences
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Nash Noncooperative Theory

Formal theory of inferences: proof theory

Proof theory treats “proofs” as mathematical objects
a proof is a sequence of symbols, each element is either an axiom, or
is derived from preceding elements following a rule

a sentence A is provable, denoted by ` A, if a proof for A exists

Proof theory connected to model theory by completeness theorem
completeness: for all sentences A,

` A if and only if A is “true” in every model

Our proof theory approach highlights an undecidability result for
prediction/decision making in games, using model theory as a tool
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Nash Noncooperative Theory

Logical inferences and interpersonal beliefs

Logical inferences in game situations
ex ante considerations require subjective inference for each player

one player’s inference may require simulated inferences for others

Epistemic logic: proof-theoretical approach to prediction-making in games
belief operators to model a player’s subjective scope

epistemic axioms to model simulated inferences

Players make decisions and predictions based on beliefs about preferences
and decision criterion
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Nash Noncooperative Theory

Prediction/decision criterion

Decision criterion based on payoff maximization w.r.t. predictions
possible final decision if best response against predicted actions

independent decision-making: take all predictions into account

Nash theory
symmetric prediction/decision criterion

prediction based on inference from other’s decision criterion

requires an infinite regress of beliefs

Can a player reach a final decision from this infinite regress?
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Nash Noncooperative Theory

Undecidability in prediction/decision making

Let Γi represent player i ’s beliefs (or infinite regress) of preferences and
decision criteria and let I1(s1) mean “s1 is a possible final decision”

Γi leads to decidability if for each si ,
I Bi(Γi) ` Bi(Ii(si)) (positive decision), or
I Bi(Γi) ` Bi(¬Ii(si)) (negative decision)

Γi leads to undecidability if for some si ,
I Bi(Γi) 0 Bi(Ii(si)) and Bi(Γi) 0 Bi(¬Ii(si))

We characterize
the class of games for which Nash theory leads to decidability

the class of games for which Nash theory leads to undecidability
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Nash Noncooperative Theory

Example: decidable case

L R1 R2
U ( 5, 5) ( 1, 0) ( 1, 0)
D1 ( 0, 1) ( 2,−2) (−2, 2)
D2 ( 0, 1) (−2, 2) ( 2,−2)

Under Nash theory,
B1(Γ1) ` B1(I1(U))

B1(Γ1) ` B1(¬I1(D1)) ∧ B1(¬I1(D2))
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Nash Noncooperative Theory

Example: undecidable case

L R
U ( 3, 2) ( 0, 0)
D ( 0, 0) ( 2, 3)

Under Nash theory,
B1(Γ1) 0 B1(I1(U)), B1(Γ1) 0 B1(¬I1(U))

B1(Γ1) 0 B1(I1(D)), B1(Γ1) 0 B1(¬I1(D))
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Nash theory

Nash Theory
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Nash theory

Nash solution of noncooperative games

G = 〈{1, 2}, {S1,S2}, {h1, h2}〉, a two-person finite game

E ⊆ S1 × S2 is interchangeable iff E = E1 × E2 6= ∅

interchangeability captures independence of players’ decision-making

Ei describes player i ’s decisions and Ej describes his predictions

Solvable and unsolvable games (Nash, 1951)
G is solvable if E(G) (the set of Nash equilibria) is interchangeable
and E(G) is the solution

otherwise, G is unsolvable
I maximal E ⊆ E(G) satisfying interchangeability is a subsolution
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Nash theory

Decision criterion for Nash solutions

A candidate solution E = E1 × E2 ⊂ S satisfies

N1 If s1 ∈ E1, then s1 is a best response against all s2 ∈ E2;

N2 If s2 ∈ E2, then s2 is a best response against all s1 ∈ E1.

for player 1, E1 describes his “good” decisions and E2 his predictions

N2 and N2 can be viewed as a system of simultaneous equations
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Nash theory

Prediction and interpersonal beliefs

In N1-N2 there is no distinction between decisions and predictions
E1 occurs in the scope of B1(·)

E2 occurs in the scope of B1B2(·)

Derivation using N1-N2 requires the following infinite regress
(from player 1’s perspective):

B1(N1) B1B2B1(N1) · · · · · · ··
↓ ↗ ↓ ↗ ↓
B1B2(N2) B1B2B1B2(N2) · · · · · · ··
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