Normal-from games

Tai-Wei Hu

University of Bristol

2-person normal-form game

A 2-person *normal form game* is given as a triple:

$$G = (N, \{S_i\}_{i \in N}, \{h_i\}_{i \in N}),$$

where

(1): $N = \{1, 2\}$ - the set of players;

- (2): $S_i = {\mathbf{s}_{i1}, ..., \mathbf{s}_{i\ell_i}}$ the set of pure strategies for player i = 1, 2;
- (3): $h_i: S_1 \times S_2 \rightarrow \mathbb{R}$ the payoff function of player i = 1, 2.

Matrix form

A 2-person normal form game $G = (N, \{S_i\}_{i \in N}, \{h_i\}_{i \in N})$ is often described by a matrix form:

Zero-sum game

We say that a 2-person game is zero-sum iff

$$h_1(s_1, s_2) + h_2(s_1, s_2) = 0$$
 for all $(s_1, s_2) \in S_1 \times S_2$. (1)

• in a zero-sum game, if h_1 and h_2 represent the preference relation \succeq_1 and \succeq_2 on $\Delta(S_1 \times S_2)$, for any $p, q \in \Delta(S_1 \times S_2)$,

$$p \succeq_1 q \Leftrightarrow q \succsim_2 p$$

Maximin decision criterion

Two-step evaluation:

- (1): Player *i* evaluates each of his strategies by its worst possible payoff
- (2): Player *i* maximizes the evaluation by controlling his strategies

Mathematically: for i = 1,

- (1^*) : for each $s_1 \in S_1$, the evaluation of s_1 is defined by $\min_{s_2} h_1(s_1, s_2)$;
- (2*): Player 1 maximizes $\min_{s_2} h_1(s_1, s_2)$ by controlling s_1 .

These two steps are expressed by

$$\max_{s_1 \in S_1} \min_{s_2 \in S_2} h_1(s_1, s_2) = \max_{s_1 \in S_1} (\min_{s_2 \in S_2} h_1(s_1, s_2)).$$
(2)

We say that s_1^* is a maximin strategy iff it is a solution of (2).

T-W Hu(Bristol U)	lecture 3	December 14, 2019	5 / 37

2-person 0-sum games Maximin Decision Criterion

Example 1

Consider the following zero-sum game:

Maximization of h_1 is equivalent to minimization of h_2 , i.e.,

$$h_1(s_1, s_2) \rightarrow \max_{s_1} \quad \Longleftrightarrow \quad h_2(s_1, s_2) \rightarrow \min_{s_1}$$
 (3)

and minimization of h_1 is equivalent to maximization of h_2 , i.e.,

$$h_1(s_1, s_2) \rightarrow \min_{s_2} \quad \Longleftrightarrow \quad h_2(s_1, s_2) \rightarrow \max_{s_2}.$$
 (4)

Maximin Criterion (cont.)

- By (3) and (4), the maximin decision criterion for player 2 is then:
- (1*-2): for each $s_2 \in S_2$, the evaluation of s_2 is defined by $\max_{s_1} h_1(s_1, s_2)$;
- (2*-2): Player 2 minimizes $\max_{s_1} h_1(s_1, s_2)$ by controlling s_2

Mathematically,

$$\min_{s_2 \in S_2} \max_{s_1 \in S_1} h_1(s_1, s_2) = \min_{s_2 \in S_2} (\max_{s_1 \in S_1} h_1(s_1, s_2)).$$
(5)

Lemma

 $\max_{s_1\in \mathcal{S}_1}\min_{s_2\in \mathcal{S}_2}h_1(s_1,s_2)\leq \min_{s_2\in \mathcal{S}_2}\max_{s_1\in \mathcal{S}_1}h_1(s_1,s_2).$

In the following example, the assertion of Lemma 1 holds in inequality.

In the following example, the assertion of Lemma 1 holds in equality.

Example						
Consider the zero-sum game						
S	11	s ₂₁ 5	s ₂₂ 3	$\min_{s_2} h_1(s_1, s_2)$ 3		
S	12	6	4	4 (a. a.) 4		
max _{s1} h	$s_1(s_1,s_2)$	6	4	$\min_{s_2} \max_{s_1} h_1(s_1, s_2) = 4$ $\min_{s_2} \max_{s_1} h_1(s_1, s_2) = 4$		

Example												
The Scissors-Rock-Paper game												
	Sc	Sc 0	Ro -1	Pa 1								
	Ro	1	0	-1								
	Pa	-1	1	0								
Calculate the maximin va	lue and	l minir	nax valı	Je.		Calculate the maximin value and minimax value.						

T-W Hu(Bristol U)	lecture 3		December 14, 2019	11 / 37
2	-person 0-sum games	Maximin Decision Cri	iterion	

Strictly Determined Games

Definition

A 2-person zero-sum game $G = (N, \{S_i\}_{i \in N}, \{h_i\}_{i \in N})$ is strictly determined iff

$$\max_{s_1 \in S_1} \min_{s_2 \in S_2} h_1(s_1, s_2) = \min_{s_2 \in S_2} \max_{s_1 \in S_1} h_1(s_1, s_2).$$
(6)

Mixed strategies

As seen above, not all zero-sum games have equilibrium

• mathematically, the issue is lack of convexity

von Neumann (1928) introduced mixed strategies

- the mixed extension of G is to replace S_i by $M_i = \Delta(S_i)$
- h_i is the von Neumann-Morgenstern expected utility indices over $\Delta(S_1 imes S_2)$

Three interpretations of mixed strategies

- as implemented with randomized devices
- as beliefs over other's strategies
- as unpredictable strategies

2-person 0-sum games Maximin Decision Criterion	

Equivalence

Proof using linear programming

Assume that $h_1(s_1, s_2) > 0$ for all (s_1, s_2) ; consider the following problem:

$$\min_{\{u_{s_1}:s_1\in S_1\}}\sum_{s_1\in S_1}u_{s_1}$$
(10)

$$\text{s.t.} \quad u_{s_1} \geq 0 \text{ for all } s_1 \in S_1, \ \sum_{s_1 \in S_1} u_{s_1} h_1(s_1,s_2) \geq 1 \text{ for all } s_2 \in S(11)$$

Lemma

- (1) There exists $\{u_{s_1}: s_1 \in S_1\}$ that satisfies (10)
- (2) If $\{u_{s_1}^*: s_1 \in S_1\}$ solves (10)-(11), then $m_1 \in M_1$ defined as

$$m_1^*(s_1) = rac{u_{s_1}^*}{\sum_{s_1 \in S_1} u_{s_1}^*}$$

solves the Maximin criterion.

N-Person Normal Form Games

A N-person *normal form game* is given as a triple:

$$G = (N, \{S_i\}_{i \in N}, \{h_i\}_{i \in N}),$$

where

(1): $N = \{1, 2, ..., N\}$ —the set of players; (2): $S_i = \{\mathbf{s}_{i1}, ..., \mathbf{s}_{i\ell_i}\}$ —the set of pure strategies for player i = 1, 2, ..., N; (3): $h_i : S_1 \times S_2 \rightarrow \mathbb{R}$ —the payoff function of player i = 1, 2, ..., N. The following is the famous theorem due to John F. Nash.

Theorem (Nash (1951))

Let $G = (N, \{S_i\}_{i \in N}, \{h_i\}_{i \in N})$ be a N-person finite normal form game. Then, the mixed extension $\hat{G} = (N, \{\Delta(S_i)\}_{i \in N}, \{h_i\}_{i \in N})$ has a Nash equilibrium.

Theorem 9 is proved by applying Brouwer's fixed point theorem (or Kakutani's fixed point theorem)

Euclidean space

 R^m , *m*-dimensional Euclidean space, has metric *d*

$$d(x,y) = \sqrt{\sum_{t=1}^m (x_t - y_t)^2}$$
 for $x, y \in R^m$

A sequence $\{x^{\nu}\}$ converges to x^{0} , denoted by $x^{\nu} \to x^{0}$, if the sequence $\{d(x^{\nu}, x^{0})\}$ converges to 0

Compactness

Two topological notions:

- $T \subseteq R^m$ is *closed* if for any sequence $\{x^\nu\}$ in $T, \{x^\nu\} \to x^0$ implies that $x^0 \in T$
- $T \subseteq R^m$ is *bounded* if there is a number M such that $d(0, x) \leq M$ for all $x \in T$
- $T \in R^m$ is *compact* iff T is closed and bounded
 - the interval [0,1] is compact
 - the *m*-dimensional simplex is compact

Convexity and continuity

 $T \subset \mathbb{R}^m$ is *convex* if for any $x, y \in T$ and $\lambda \in [0, 1]$, the convex combination $\lambda x + (1 - \lambda)y \in T$

A function $f : T \to T$ is continuous if for any sequence $\{x^{\nu}\}$ in T, $x^{\nu} \to x^{0}$, then $f(x^{\nu}) \to f(x^{0})$

Existence

Brouwer's fixed point theorem

Theorem (Brouwer (1908))

Let T be a nonempty compact convex subset of \mathbb{R}^m , and let f be a continuous function from T to T. Then f has a fixed point x^0 in T, i.e., $f(x^0) = x^0.$

Ex ante decision-making

Prediction and undecidability

$\label{eq:prediction} Prediction/decision \ making \ in \ game \ theory$

Payoff interdependence

- one player's optimal choice depends on other players' actions
- prediction about others' actions crucial to one's decision

Battle of Sexes

	Board Game	Hiking
Board Game	(3, 2)	(0, 0)
Hiking	(0, 0)	(2,3)

How to make predictions?

Give up making predictions

• dominant strategy criterion, default choice

Prediction by induction from past experiences

- treating players as nature and use probability distributions
- evolutionary game theory/learning theory

Prediction by inferences

- infer others' actions from their preferences and decision methods
- ex ante prediction-making is a process of logical inferences

T-W Hu(Bristol U)	lecture 3	December 14, 2019	27 / 37
Nash No	oncooperative Theory		

Formal theory of inferences: proof theory

Proof theory treats "proofs" as mathematical objects

- a proof is a sequence of symbols, each element is either an *axiom*, or is derived from preceding elements following a *rule*
- a sentence A is provable, denoted by $\vdash A$, if a proof for A exists

Proof theory connected to model theory by completeness theorem

• completeness: for all sentences A,

 $\vdash A$ if and only if A is "true" in every model

Our proof theory approach highlights an undecidability result for prediction/decision making in games, using model theory as a tool

Logical inferences and interpersonal beliefs

Logical inferences in game situations

- *ex ante* considerations require subjective inference for each player
- one player's inference may require simulated inferences for others

Epistemic logic: proof-theoretical approach to prediction-making in games

- belief operators to model a player's subjective scope
- *epistemic axioms* to model simulated inferences

Players make decisions and predictions based on beliefs about preferences and decision criterion

Prediction/decision criterion

Decision criterion based on payoff maximization w.r.t. predictions

- possible final decision if best response against predicted actions
- independent decision-making: take *all* predictions into account

Nash theory

- symmetric prediction/decision criterion
- prediction based on inference from other's decision criterion
- requires an infinite regress of beliefs

Can a player reach a final decision from this infinite regress?

Undecidability in prediction/decision making

Let Γ_i represent player *i*'s beliefs (or infinite regress) of preferences and decision criteria and let $I_1(s_1)$ mean " s_1 is a possible final decision"

- Γ_i leads to decidability if for each s_i ,
 - $\mathbf{B}_i(\Gamma_i) \vdash \mathbf{B}_i(\mathsf{I}_i(s_i))$ (positive decision), or
 - $\mathbf{B}_i(\Gamma_i) \vdash \mathbf{B}_i(\neg I_i(s_i))$ (negative decision)
- Γ_i leads to undecidability if for some s_i ,
 - $\mathbf{B}_i(\Gamma_i) \nvDash \mathbf{B}_i(\mathsf{I}_i(s_i))$ and $\mathbf{B}_i(\Gamma_i) \nvDash \mathbf{B}_i(\neg \mathsf{I}_i(s_i))$

We characterize

- the class of games for which Nash theory leads to decidability
- the class of games for which Nash theory leads to undecidability

T-W Hu(Bristol U)	lecture 3	December 14, 2019	31 / 37

Nash Noncooperative Theory

Example: decidable case

	L	R_1	R_2
U	(5,5)	(1, 0)	(1, 0)
D_1	(0, 1)	(2,-2)	(-2, 2)
<i>D</i> ₂	(0, 1)	(-2, 2)	(2,-2)

Under Nash theory,

- $\mathbf{B}_1(\Gamma_1) \vdash \mathbf{B}_1(\mathbf{I}_1(U))$
- $\mathbf{B}_1(\Gamma_1) \vdash \mathbf{B}_1(\neg \mathsf{I}_1(D_1)) \land \mathbf{B}_1(\neg \mathsf{I}_1(D_2))$

Example: undecidable case

		L		R)	
U	(3,	2)	(0,	0)
D	(0,	0)	(2,	3)

Under Nash theory,

- $\mathbf{B}_1(\Gamma_1) \nvDash \mathbf{B}_1(\mathsf{I}_1(U)), \ \mathbf{B}_1(\Gamma_1) \nvDash \mathbf{B}_1(\neg \mathsf{I}_1(U))$
- $\mathbf{B}_1(\Gamma_1) \nvDash \mathbf{B}_1(\mathsf{I}_1(D)), \ \mathbf{B}_1(\Gamma_1) \nvDash \mathbf{B}_1(\neg \mathsf{I}_1(D))$

T-W Hu(Bristol U)	lecture 3	December 14, 2019	33 / 37
	Nash theory		

Nash Theory

Nash solution of noncooperative games

 $G = \langle \{1,2\}, \{S_1,S_2\}, \{h_1,h_2\}
angle$, a two-person finite game

- $E \subseteq S_1 imes S_2$ is interchangeable iff $E = E_1 imes E_2
 eq \emptyset$
- interchangeability captures independence of players' decision-making
- E_i describes player *i*'s decisions and E_j describes his predictions

Solvable and unsolvable games (Nash, 1951)

- G is solvable if E(G) (the set of Nash equilibria) is interchangeable and E(G) is the solution
- otherwise, G is unsolvable
 - maximal $E \subseteq E(G)$ satisfying interchangeability is a subsolution

T-W Hu(Bristol U)	lecture 3	December 14, 2019	35 / 37
	Nash theory		

Decision criterion for Nash solutions

- A candidate solution $E = E_1 \times E_2 \subset S$ satisfies
- N_1 If $s_1 \in E_1$, then s_1 is a best response against all $s_2 \in E_2$;

 N_2 If $s_2 \in E_2$, then s_2 is a best response against all $s_1 \in E_1$.

- for player 1, E_1 describes his "good" decisions and E_2 his predictions
- N_2 and N_2 can be viewed as a system of simultaneous equations

Nash theory

Prediction and interpersonal beliefs

In N_1 - N_2 there is no distinction between decisions and predictions

- E_1 occurs in the scope of $\mathbf{B}_1(\cdot)$
- E_2 occurs in the scope of $\mathbf{B}_1\mathbf{B}_2(\cdot)$

Derivation using N_1 - N_2 requires the following infinite regress (from player 1's perspective):

$B_1(N_1)$		$\mathbf{B}_1\mathbf{B}_2\mathbf{B}_1(N_1)$		••••
\rightarrow	\nearrow	\rightarrow	\nearrow	\downarrow
$\mathbf{B}_1\mathbf{B}_2(N_2)$		$\mathbf{B}_1\mathbf{B}_2\mathbf{B}_1\mathbf{B}_2(N_2)$		• • • • • • • •

T-W Hu (Bristol U)

lecture 3

December 14, 2019 37 / 37