Expected utility theory

Tai-Wei Hu

University of Bristol

N-Person Normal Form Games

A N-person *normal form game* is given as a triple:

$$G = (N, \{S_i\}_{i \in N}, \{h_i\}_{i \in N}),$$

where

(1): $N = \{1, 2, ..., N\}$ —the set of players; (2): $S_i = \{\mathbf{s}_{i1}, ..., \mathbf{s}_{i\ell_i}\}$ —the set of (pure) strategies for player i = 1, 2, ..., N; (3): $h_i : S_1 \times S_2 \rightarrow \mathbb{R}$ —the payoff function of player i = 1, 2, ..., N.

Nash equilibrium

A profile of strategies $s^* = (s_1^*, ..., s_N^*)$ a Nash equilibrium if for all $i \in N$,

$$h_i(s_i, s_{-i}^*) \le h_i(s_i^*, s_{-i}^*)$$
 for all $s_i \in S_i$. (1)

• unfortunately, not all games have an equilibrium

von Neumann introduced mixed strategies to obtain existence

Mixed strategies

The mixed extension of G is to replace S_i by $M_i = \Delta(S_i)$

 \bullet this also requires a new interpretation of h_1 and h_2

Three interpretations of mixed strategies

- as implemented with randomized devices
- as beliefs over other's strategies
- as unpredictable strategies

Expected Utility Theory

Somehow begins wit St. Petersburg paradox (1713)

- need to relax linear utility function
- but other solutions exist....

Developed by von Neumann and Morgenstern (1944)

• foundations to scientific studies of social behaviour

Cornerstone to modern economic analysis

- meaningful cardinal utility
- important for defining efficiency

T-W Hu (Bristol U)	lecture 2	December 14, 2019	5 / 21
Expected Utility Theory			

Outcome space

For our purpose, we consider levels of consumption

• a fixed set of levels, $C = \{c_1 < c_2 < ..., < c_n\}$

Expected utility theory considers *lotteries* over the outcomes

• a lottery is a probability distribution μ over C:

$$\mu: C \to [0,1], \ \sum_{i=1}^{n} \mu(c_i) = 1$$

- set of lotteries over C denoted by $\Delta(C)$
- we also use c_i to denote degenerate lottery that concentrates on c_i

Preference over lotteries

The primitive is a preference relation over $\Delta(C)$, denoted \prec

- $\mu_1 \prec \mu_2$ means the agent will choose μ_2 over μ_1 if given the choice
- more convenient to work with weak preference \precsim : $\mu_1 \precsim \mu_2$ if $\mu_1 \prec \mu_2$ or indifferent

Relation $\preceq \subset \Delta(C) \times \Delta(C)$ is a preference relation if

- it is complete: $\mu_1\precsim\mu_2$ or $\mu_2\precsim\mu_1$
- it is transitive: $\mu_1\precsim\mu_2$ and $\mu_2\precsim\mu_3$ imply $\mu_1\precsim\mu_3$

Given \precsim , we can define \prec and \sim as

 $\mu_1 \prec \mu_2$ iff $\mu_2 \precsim \mu_1$ does not hold; $\mu_1 \sim \mu_2$ iff $\mu_1 \precsim \mu_2$ and $\mu_2 \precsim \mu_1$

Compound lotteries

Given two lotteries μ_1 and μ_2 and a number α , define

$$\mu_3 = \alpha \mu_1 + (1 - \alpha) \mu_2$$

by

$$\mu_3(c_i) = lpha \mu_1(c_i) + (1 - lpha) \mu_2(c_i)$$
 for all $c_i \in C$

- $\mu_3 \in \Delta(C)$
- it can be interpreted as a two-stage lottery:
 - first lottery has outcome μ_1 or μ_2
 - then, execute the resulting lottery μ_1 or μ_2

Expected utility assumes identification of this compound lottery with μ_3

Expected utility representation

Preference relation \preceq over $\Delta(C)$ has an *expected utility representation* if

• there is a function $u: C \to \mathbb{R}$ such that

$$\mu_1\precsim \mu_2$$
 if and only if $\sum_{i=1}^n \mu_1(c_i)u(c_i) \le \sum_{i=1}^n \mu_2(c_i)u(c_i)$

In this case, we say that the utility function u represents \precsim

- if *u* represents \preceq and if v = au + b for some a > 0, then *v* also represents \preceq
- the utility function *u* is called *cardinal*

Representation theorem allows us to infer u from observed choices

T-W Hu (Bristol U)	lecture 2	December 14, 2019	9 / 21
	Representation		

Axioms for expected utility

EU1 \precsim is a preference relation

EU2 for any $\alpha \in (0,1)$, and any $\mu_1, \ \mu_2, \ \mu_3 \in \Delta(\mathcal{C})$,

$$\alpha\mu_1 + (1-\alpha)\mu_3 \prec \alpha\mu_2 + (1-\alpha)\mu_3$$
 if and only if $\mu_1 \prec \mu_2$

EU3 if $\mu_1 \prec \mu_2 \prec \mu_3$, then there exist $\alpha \in (0,1)$ such that

$$\alpha\mu_1 + (1-\alpha)\mu_3 \sim \mu_2$$

- these axioms can be verified based on actual choices
- hence the theory is *refutable*

Representation

Expected Utility Representation Theorem

Theorem

Let \leq be a relation over $\Delta(C)$.

- d d has an expected utility representation iff it satisfies (EU1)-(EU3).
- 2 If u and v both represent \leq , then u = av + b for some a > 0.
- (EU1)-(EU3) are necessary and sufficient for EU representation
- the representation is essentially unique

Proof

Necessity is rather routine

• given u, \preceq is fully determined

Sufficiency requires construction of *u*

- begin with $u(c_1) = 0$ and $u(c_n) = 1$
- for each other c_i , EU3 implies existence of α such that

$$c_i \sim \alpha c_n + (1 - \alpha) c_1$$

take $u(c_i) = \alpha$

• finally, show that u represents \precsim

Extension to all consumption levels

Up to now we assumed a finite set of outcomes

• without any restrictions on *u*

Can be extended to $\mathcal{C}=\mathbb{R}_+$, and more structures to \prec , such as

- MC monotonicity: if c < c', then $c \prec c'$
 - C continuity: for any c, $\{c': c\precsim c'\}$ and $\{c': c'\precsim c\}$ are both closed

To do so, consider the set of *simple lotteries* over \mathbb{R}_+ :

• $\mu: \mathbb{R}_+ \to [0,1]$ is a simple lottery if

$$\mu(c)=$$
 0 for all but finitely many $c's$ and $\sum\limits_{c}\mu(c)=1$

• the set of simple lotteries is closed under compound lotteries

T-W Hu (Bristol U)	lecture 2	December 14, 2019	13 / 21
	Risk Aversion		

Risk aversion

Casual observation shows that people do not like risk

- but they make trade-off b/w risk and return
- that is, holding expected value at constant, more risk is less preferred

Formally, we can formulate risk aversion as

RA for all $\mu \in \Delta(\mathbb{R}_+)$, $\mu \precsim \mathbb{E}_{\mu}(c)$

- $\Delta(\mathbb{R}_+)$ is the set of all simple lotteries
- $\mathbb{E}_{\mu}(c) = \sum_{c} \mu(c)c$, expected value of c according to μ

Strict risk aversion requires strict preference whenever μ is not degenerate

Risk Aversion

Representation theorems for other properties

Let \preceq be a relation over $\Delta(\mathbb{R}_+)$ satisfying (EU1)-(EU3) represented by u. $\mathfrak{O} \preceq$ satisfies MC iff u is strictly increasing.

2 \precsim satisfies C iff u is continuous.

3 \leq satisfies (strict) risk aversion iff u is (strictly) concave.

u is concave if for any c_1, c_2 and any $\alpha \in (0, 1)$,

$$\alpha u(c_1) + (1-\alpha)u(c_2) \leq u[\alpha c_1 + (1-\alpha)c_2]$$

u is strictly concave if the inequality is strict

T-W Hu (Bristol U) lecture 2 December 14, 2019 15/21 **Risk Aversion**

Jensen's inequality

Theorem A function $f : \mathbb{R}_+ \to \mathbb{R}$ is (strictly) concave iff for any $\mu \in \Delta(\mathbb{R}_+)$,

 $\mathbb{E}_{\mu}(f) \leq (<) f[\mathbb{E}_{\mu}(c)].$

• $\mathbb{E}_{\mu}(f) = \sum_{c} \mu(c) f(c)$

• characterization of risk aversion follows immediately

Can be extended to all distributions over \mathbb{R}_+ (not just simple ones)

Expected utility maximization

Representation theorem transforms choice problem to utility maximization

- allows for the use of calculus
- typical economic problem is to choose from a *feasible set*

Does the maximum always exit?

Theorem (Extreme Value Theorem)

Suppose that $A \subset \mathbb{R}^n$ is a compact set and that $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function. Then, there exists $x \in A$ such that

$$f(x) \ge f(x')$$
 for all $x' \in A$. (2)

- A is compact if it is closed and bounded
- we call the x that satisfies (2) a maximum point

T-W Hu (Bristol U)	lecture 2	December 14, 2019	17 / 21

Optimization

First-order conditions

Extreme value theorem only gives existence; but how to find the optimum?

Theorem

Suppose that $A \subset \mathbb{R}^n$ is a compact set and that $f : \mathbb{R}^n \to \mathbb{R}$ is a differentiable function. If x^* is an interior maximum point, then

$$\frac{\partial}{\partial x_i} f(x^*) = 0 \text{ for all } i = 1, ..., n.$$
(3)

• $x = (x_1, ..., x_n) \in \mathbb{R}^n$

This condition is only a necessary condition for local optimum

- it only works for interior solutions
- it may not be maximum: it can be minimum as well!
- no guarantee of global optimum either

Optimization

Concave functions

Theorem

Suppose that $f : \mathbb{R}_+ \to \mathbb{R}$ is a concave function.

1 *f* is continuous.

- *Q f* is differentiable except for countably many points.
- that is, axiom RA implies axiom C

Theorem

A differentiable function $f : \mathbb{R}_+ \to \mathbb{R}$ is (strictly) concave if and only if f'(x) is (strictly) decreasing.

• as a result, local maximum is also global maximum

Optimization	T-W Hu (Bristol U)	lecture 2	December 14, 2019	19 / 21
Optimization				
Optimization				
		Optimization		

Constrained optimization

Consider the following problem:

$$\max_{x\in[a,b]}f(x),$$

where f(x) is a differentiable concave function

- if $f'(x^*) = 0$ for some $x^* \in (a, b)$, then x^* is a maximum point
- if $f'(a) \leq 0$, then $x^* = a$ is a maximum point
- if $f'(b) \ge 0$, then $x^* = b$ is a maximum point

Example: insurance problem

Two states of the world: high (h) and low (ℓ)

- \bullet probability of ℓ is μ
- w/o insurance, consumption at h is w_h and at ℓ is w_ℓ , $w_\ell < w_h$

One unit of insurance pays 1 at ℓ but charges premium p

• with x units of insurance, consumption levels are

 $c_h = w_h - px$ and $c_\ell = w_\ell + (1 - p)x$

• a "fair" premium would be $p = \mu$

Risk aversion implies full insurance under fair premium

T-W Hu (Bristol U)

ecture 2

December 14, 2019 21 / 21