
Expected utility theory

Tai-Wei Hu

University of Bristol

T-W Hu (Bristol U) lecture 2 December 14, 2019 1 / 21

Nash equilibrium

N-Person Normal Form Games

A N-person normal form game is given as a triple:

G = (N, {Si}i∈N , {hi}i∈N),

where
(1): N = {1, 2, ...,N}—the set of players;

(2): Si = {si1, ..., si`i}—the set of (pure) strategies for player
i = 1, 2, ...,N;

(3): hi : S1 × S2 → R—the payoff function of player i = 1, 2, ...,N.
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Nash equilibrium

Nash equilibrium

A profile of strategies s∗ = (s∗1 , ..., s∗N) a Nash equilibrium if for all i ∈ N,

hi(si , s∗−i) ≤ hi(s∗i , s∗−i) for all si ∈ Si . (1)

unfortunately, not all games have an equilibrium

von Neumann introduced mixed strategies to obtain existence
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Nash equilibrium

Mixed strategies

The mixed extension of G is to replace Si by Mi = ∆(Si)

this also requires a new interpretation of h1 and h2

Three interpretations of mixed strategies
as implemented with randomized devices

as beliefs over other’s strategies

as unpredictable strategies
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Expected Utility Theory

Expected Utility Theory

Somehow begins wit St. Petersburg paradox (1713)
need to relax linear utility function

but other solutions exist....

Developed by von Neumann and Morgenstern (1944)
foundations to scientific studies of social behaviour

Cornerstone to modern economic analysis
meaningful cardinal utility

important for defining efficiency
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Expected Utility Theory

Outcome space

For our purpose, we consider levels of consumption
a fixed set of levels, C = {c1 < c2 < .... < cn}

Expected utility theory considers lotteries over the outcomes
a lottery is a probability distribution µ over C :

µ : C → [0, 1],
n∑

i=1
µ(ci) = 1

set of lotteries over C denoted by ∆(C)

we also use ci to denote degenerate lottery that concentrates on ci
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Expected Utility Theory

Preference over lotteries

The primitive is a preference relation over ∆(C), denoted ≺
µ1 ≺ µ2 means the agent will choose µ2 over µ1 if given the choice

more convenient to work with weak preference -:
µ1 - µ2 if µ1 ≺ µ2 or indifferent

Relation -⊂ ∆(C)×∆(C) is a preference relation if
it is complete: µ1 - µ2 or µ2 - µ1

it is transitive: µ1 - µ2 and µ2 - µ3 imply µ1 - µ3

Given -, we can define ≺ and ∼ as

µ1 ≺ µ2 iff µ2 - µ1 does not hold; µ1 ∼ µ2 iff µ1 - µ2 and µ2 - µ1
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Expected Utility Theory

Compound lotteries

Given two lotteries µ1 and µ2 and a number α, define

µ3 = αµ1 + (1 − α)µ2

by
µ3(ci) = αµ1(ci) + (1 − α)µ2(ci) for all ci ∈ C

µ3 ∈ ∆(C)

it can be interpreted as a two-stage lottery:
I first lottery has outcome µ1 or µ2

I then, execute the resulting lottery µ1 or µ2

Expected utility assumes identification of this compound lottery with µ3
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Representation

Expected utility representation

Preference relation - over ∆(C) has an expected utility representation if
there is a function u : C → R such that

µ1 - µ2 if and only if
n∑

i=1
µ1(ci)u(ci) ≤

n∑
i=1

µ2(ci)u(ci)

In this case, we say that the utility function u represents -

if u represents - and if v = au + b for some a > 0, then v also
represents -

the utility function u is called cardinal

Representation theorem allows us to infer u from observed choices
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Representation

Axioms for expected utility

EU1 - is a preference relation

EU2 for any α ∈ (0, 1), and any µ1, µ2, µ3 ∈ ∆(C),

αµ1 + (1 − α)µ3 ≺ αµ2 + (1 − α)µ3 if and only if µ1 ≺ µ2

EU3 if µ1 ≺ µ2 ≺ µ3, then there exist α ∈ (0, 1) such that

αµ1 + (1 − α)µ3 ∼ µ2

these axioms can be verified based on actual choices

hence the theory is refutable
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Representation

Expected Utility Representation Theorem

Theorem
Let - be a relation over ∆(C).

1 - has an expected utility representation iff it satisfies (EU1)-(EU3).

2 If u and v both represent -, then u = av + b for some a > 0.

(EU1)-(EU3) are necessary and sufficient for EU representation

the representation is essentially unique
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Representation

Proof

Necessity is rather routine
given u, - is fully determined

Sufficiency requires construction of u
begin with u(c1) = 0 and u(cn) = 1

for each other ci , EU3 implies existence of α such that

ci ∼ αcn + (1 − α)c1

take u(ci) = α

finally, show that u represents -
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Representation

Extension to all consumption levels
Up to now we assumed a finite set of outcomes

without any restrictions on u

Can be extended to C = R+, and more structures to ≺, such as
MC monotonicity: if c < c ′, then c ≺ c ′

C continuity: for any c, {c ′ : c - c ′} and {c ′ : c ′ - c} are both closed

To do so, consider the set of simple lotteries over R+:
µ : R+ → [0, 1] is a simple lottery if

µ(c) = 0 for all but finitely many c ′s and
∑

c
µ(c) = 1

the set of simple lotteries is closed under compound lotteries
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Risk Aversion

Risk aversion

Casual observation shows that people do not like risk
but they make trade-off b/w risk and return

that is, holding expected value at constant, more risk is less preferred

Formally, we can formulate risk aversion as
RA for all µ ∈ ∆(R+), µ - Eµ(c)

∆(R+) is the set of all simple lotteries

Eµ(c) =
∑

c µ(c)c, expected value of c according to µ

Strict risk aversion requires strict preference whenever µ is not degenerate
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Risk Aversion

Representation theorems for other properties

Theorem
Let - be a relation over ∆(R+) satisfying (EU1)-(EU3) represented by u.

1 - satisfies MC iff u is strictly increasing.

2 - satisfies C iff u is continuous.

3 - satisfies (strict) risk aversion iff u is (strictly) concave.

u is concave if for any c1, c2 and any α ∈ (0, 1),

αu(c1) + (1 − α)u(c2) ≤ u[αc1 + (1 − α)c2]

u is strictly concave if the inequality is strict
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Risk Aversion

Jensen’s inequality

Theorem
A function f : R+ → R is (strictly) concave iff for any µ ∈ ∆(R+),

Eµ(f ) ≤ (<)f [Eµ(c)].

Eµ(f ) =
∑

c µ(c)f (c)

characterization of risk aversion follows immediately

Can be extended to all distributions over R+ (not just simple ones)
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Optimization

Expected utility maximization
Representation theorem transforms choice problem to utility maximization

allows for the use of calculus

typical economic problem is to choose from a feasible set

Does the maximum always exit?

Theorem (Extreme Value Theorem)
Suppose that A ⊂ Rn is a compact set and that f : Rn → R is a
continuous function. Then, there exists x ∈ A such that

f (x) ≥ f (x ′) for all x ′ ∈ A. (2)

A is compact if it is closed and bounded

we call the x that satisfies (2) a maximum point

T-W Hu (Bristol U) lecture 2 December 14, 2019 17 / 21

Optimization

First-order conditions
Extreme value theorem only gives existence; but how to find the optimum?

Theorem
Suppose that A ⊂ Rn is a compact set and that f : Rn → R is a
differentiable function. If x∗ is an interior maximum point, then

∂

∂xi
f (x∗) = 0 for all i = 1, ..., n. (3)

x = (x1, ..., xn) ∈ Rn

This condition is only a necessary condition for local optimum
it only works for interior solutions

it may not be maximum: it can be minimum as well!

no guarantee of global optimum either
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Optimization

Concave functions

Theorem
Suppose that f : R+ → R is a concave function.

1 f is continuous.

2 f is differentiable except for countably many points.

that is, axiom RA implies axiom C

Theorem
A differentiable function f : R+ → R is (strictly) concave if and only if
f ′(x) is (strictly) decreasing.

as a result, local maximum is also global maximum
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Optimization

Constrained optimization

Consider the following problem:

max
x∈[a,b]

f (x),

where f (x) is a differentiable concave function

if f ′(x∗) = 0 for some x∗ ∈ (a, b), then x∗ is a maximum point

if f ′(a) ≤ 0, then x∗ = a is a maximum point

if f ′(b) ≥ 0, then x∗ = b is a maximum point
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Optimization

Example: insurance problem

Two states of the world: high (h) and low (`)
probability of ` is µ

w/o insurance, consumption at h is wh and at ` is w`, w` < wh

One unit of insurance pays 1 at ` but charges premium p
with x units of insurance, consumption levels are

ch = wh − px and c` = w` + (1 − p)x

a “fair” premium would be p = µ

Risk aversion implies full insurance under fair premium
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