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Nash equilibrium

N-Person Normal Form Games

A N-person normal form game is given as a triple:

G = (N,{Sitien, {hitien);

where
(1): N={1,2,..., N}—the set of players;

(2): Si = {si1, ..., s, }—the set of (pure) strategies for player
i=1,2,..., N,

(3): hi : S1 x S, — R—the payoff function of player i = 1,2, ..., N.
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Nash equilibrium

Nash equilibrium

A profile of strategies s* = (sf, ..., sy) a Nash equilibrium if for all i € N,

hi(si,s*;) < hi(s’,s*;) for all s; € S;.
@ unfortunately, not all games have an equilibrium

von Neumann introduced mixed strategies to obtain existence
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Mixed strategies

The mixed extension of G is to replace S; by M; = A(S;)

@ this also requires a new interpretation of h; and hy
Three interpretations of mixed strategies

@ as implemented with randomized devices

@ as beliefs over other's strategies

@ as unpredictable strategies
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Expected Utility Theory

Somehow begins wit St. Petersburg paradox (1713)

@ need to relax linear utility function
@ but other solutions exist....

Developed by von Neumann and Morgenstern (1944)

@ foundations to scientific studies of social behaviour

Cornerstone to modern economic analysis

@ meaningful cardinal utility

@ important for defining efficiency
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Expected Utility Theory

Outcome space

For our purpose, we consider levels of consumption

@ a fixed set of levels, C ={c1 < o < ... < ¢y}

Expected utility theory considers lotteries over the outcomes

@ a lottery is a probability distribution u over C:

p: C—1[0,1], Z,u(c,-)zl
i=1

@ set of lotteries over C denoted by A(C)

@ we also use ¢; to denote degenerate lottery that concentrates on ¢;
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Expected Utility Theory

Preference over lotteries

The primitive is a preference relation over A(C), denoted <

@ 1 < 2 means the agent will choose po over py if given the choice

@ more convenient to work with weak preference =:
1 3 po if gy < po or indifferent

Relation 2C A(C) x A(C) is a preference relation if
@ it is complete: 1 = o or pp 3 g

@ it is transitive: p1 = po and po = ps imply p1 3 ps
Given =, we can define < and ~ as

n1 < 2 iff 2 j 1 does not hold; M1 ~ U2 iff M1 ;j L2 and 2 j M1
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Expected Utility Theory

Compound lotteries

Given two lotteries p1 and pp and a number «, define

p3 = opr + (1 — a)uz

by
ps(c) = api(c) + (1 — a)uz(c) for all ¢; € C

o u3z e A(C)

@ it can be interpreted as a two-stage lottery:
» first lottery has outcome g or po

» then, execute the resulting lottery g or up

Expected utility assumes identification of this compound lottery with p3
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Representation

Expected utility representation

Preference relation X over A(C) has an expected utility representation if

@ there is a function v : C — R such that

p1 3 e if and only if > p(ci)u(c) <Y pa(c)u(c)
i=1 i=1

In this case, we say that the utility function u represents =

o if u represents = and if v = au + b for some a > 0, then v also
represents =

@ the utility function u is called cardinal

Representation theorem allows us to infer u from observed choices
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Representation

Axioms for expected utility

EU1l = is a preference relation

EU2 for any o € (0,1), and any u1, p2, puz € A(C),

apr + (1 — a)us < auz + (1 — a)us if and only if pu1 < uo
EU3 if u1 < pp < u3, then there exist o € (0,1) such that

ap + (1 —a)uz ~ po

@ these axioms can be verified based on actual choices

@ hence the theory is refutable
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Expected Utility Representation Theorem

Theorem
Let X be a relation over A(C).
© = has an expected utility representation iff it satisfies (EUI)-(EU3).

@ Ifu and v both represent =, then u = av + b for some a > 0.

e (EU1)-(EU3) are necessary and sufficient for EU representation

@ the representation is essentially unique
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Proof

Necessity is rather routine

e given u, = is fully determined

1T~

Sufficiency requires construction of u

@ begin with u(c1) =0 and u(c,) =1
e for each other ¢;, EU3 implies existence of « such that
ci~ach+ (1 —a)ag
take u(c) = «

e finally, show that u represents =
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Representation

Extension to all consumption levels

Up to now we assumed a finite set of outcomes

@ without any restrictions on u

Can be extended to C = R, and more structures to <, such as

MC monotonicity: if ¢ < ¢, then ¢ < ¢’

C continuity: for any ¢, {c: ¢ 3 ¢’} and {c’ : ¢/ < ¢} are both closed

To do so, consider the set of simple lotteries over R :

o 1 : Ry —[0,1] is a simple lottery if

p(c) = 0 for all but finitely many ¢’s and Z,u(c) =1
C

@ the set of simple lotteries is closed under compound lotteries
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Risk aversion

Casual observation shows that people do not like risk

@ but they make trade-off b/w risk and return
@ that is, holding expected value at constant, more risk is less preferred

Formally, we can formulate risk aversion as
RA for all p € A(R4), p S Eu(c)

o A(R,) is the set of all simple lotteries

o E, (c) =) .u(c)c, expected value of ¢ according to 1

Strict risk aversion requires strict preference whenever p is not degenerate
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Yy

Representation theorems for other properties

Theorem

Let X be a relation over A(R..) satisfying (EU1)-(EU3) represented by u.
© = satisfies MC iff u is strictly increasing.

@ = satisfies C iff u is continuous.

© 2 satisfies (strict) risk aversion iff u is (strictly) concave.

u is concave if for any ¢, ¢ and any a € (0, 1),

au(cy) + (1 — a)u(e) < ulac + (1 — a)c]

u is strictly concave if the inequality is strict
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Yy

Jensen’s inequality

Theorem

A function f : Ry — R is (strictly) concave iff for any p € A(Ry),
E,.(f) < (QF[Eu(c)]-

o E,(f) = ¥ u(c)f(c)

@ characterization of risk aversion follows immediately

Can be extended to all distributions over R (not just simple ones)
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Expected utility maximization

Representation theorem transforms choice problem to utility maximization

@ allows for the use of calculus

@ typical economic problem is to choose from a feasible set

Does the maximum always exit?

Theorem (Extreme Value Theorem)

Suppose that A C R" is a compact set and that f : R" — R is a
continuous function. Then, there exists x € A such that

f(x) > f(xX') for all X' € A. (2)

@ Ais compact if it is closed and bounded

e we call the x that satisfies (2) a maximum point
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Optimization

First-order conditions

Extreme value theorem only gives existence; but how to find the optimum?

Theorem

Suppose that A C R" is a compact set and that f : R"” — R is a
differentiable function. If x* is an interior maximum point, then

0 . _
a_Xif(x Y=0foralli=1,...n. (3)

@ X = (x1,...,%p) €ER"

This condition is only a necessary condition for local optimum
@ it only works for interior solutions
@ it may not be maximum: it can be minimum as well!

@ no guarantee of global optimum either
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Optimization

Concave functions

Theorem

Suppose that f : R, — R is a concave function.
© f is continuous.

@ 1 is differentiable except for countably many points.

@ that is, axiom RA implies axiom C

Theorem

A differentiable function f : Ry — R is (strictly) concave if and only if
f'(x) is (strictly) decreasing.

@ as a result, local maximum is also global maximum
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Optimization

Constrained optimization

Consider the following problem:

f'
xg][gfé] ().

where f(x) is a differentiable concave function

o if f/(x*) =0 for some x* € (a, b), then x* is a maximum point
e if f’(a) <0, then x* = a is a maximum point

e if f/(b) > 0, then x* = b is a maximum point
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Optimization

Example: insurance problem

Two states of the world: high (h) and low (¢)
@ probability of £ is

@ w/o insurance, consumption at h is wy and at £ is wp, wy < wp,

One unit of insurance pays 1 at ¢ but charges premium p

@ with x units of insurance, consumption levels are
ch=wp—pxand ¢g =wy+ (1 — p)x

@ a “fair” premium would be p = p

Risk aversion implies full insurance under fair premium
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