

Switching HMM and HMM Classification

Lecture 4

Antoni B. Chan

Dept. of Computer Science, City University of Hong Kong

Janet H. Hsiao

Dept. of Psychology, The University of Hong Kong

Outline

- Switching HMM: Modeling changes in Cognitive Task
- SMAC: Scanpath Modeling and Classification with HMMs
- Mini-Project: Finalize data analysis and work on project presentations

Modeling High-Level Tasks

 Previous method uses an eye gaze model for each task – each trial consists of one task.

- What if in each trial the participant performs two tasks?
- Can we model eye gaze as it switches between tasks?
- Switching hidden Markov Model
 - Eye gaze patterns change with task over time.
 - Study individual differences in gaze cascade effect.

Experiment Design

- 2AFC Task, 24 participants
- Computer-generated faces (60 male 60 female)
- Procedure:
 - 1) Rate the level of attractiveness of all the faces (1 to 7)
 - 2) The ones received similar ratings were paired up. Participants had to choose which one they preferred.

Previous Studies

- Shimojo et al., 2003 showed that the eye movements a person made during a trial can be different:
 - at the exploration stage, the person spends time looking at both images.
 - at the **preference-biased** stage, the person spends more time looking at the to-be-chosen image.

Switching hidden Markov model

- The model has two levels:
 - high-level states (switching between high-level tasks)
 - low level states (eye movement patterns)

Switching hidden Markov model

- Two transition matrices encode:
 - High-level: Switching between tasks.
 - Low-level: Switching between ROIs (depends on the task).
 - Although the low-level transitions are different, the ROIs are shared among the high-level states.

Methodology

Modeling

- For each participant, learn a switching HMM on their eye gaze data.
 - assume one-way transition from exploration to preference-biased (zero probability to move from preference to exploration)
 - Learn separate HMM for left- and right-selected trials, then combine them.
- Cluster into 2 groups using k-means clustering on the highlevel transition matrices.

• Analysis

- Examine the "exploration" and "preference-biased" HMMs.
 - Are there differences in preference-biased period?
- Gaze cascade plots
- Inferring selected face from fixations

Switching HMM for all Subjects

• Use VHEM to summarize exploration and preference-biased HMMs over all 24 subjects.

	Exploration	Preference
Prior	1.00	0.00
Exploration	0.55	0.45
Preference	0.00	1.00

high-level transition matrix

exploration transition matrix

Preference-biased transition matrix

	Left	Right
Prior	0.70	0.30
Left	0.64	0.36
Right	0.12	0.88

	to Chosen	to Not-chosen
Prior	0.53	0.47
from Chosen	0.77	0.23
from Not-chosen	0.33	0.67

Briefly examine left and then right side

Preference to look at chosen side. Consistent with gaze cascade effect.

Switching HMMs for 2 Groups

Group A (11 participants)

High-level	Exploration	Preference
Prior	1.00	0.00
Exploration	0.68	0.32
Preference	0.00	1.00

Group A has
longer
exploration
period

Group B (13 participants)

High-level	Exploration	Preference
Prior	1.00	0.00
Exploration	0.45	0.55
Preference	0.00	1.00

Exploration	Left	Right
Prior	0.76	0.24
Left	0.67	0.33
Right	0.17	0.83

Group A looks at left side longer than Group B

Exploration	Left	Right
Prior	0.64	0.36
Left	0.60	0.40
Right	0.09	0.91

Pref-biased	Chosen	Not-chosen
Prior	0.50	0.50
Chosen	0.83	0.17
Not-chosen	0.25	0.75

Pref-biased	Chosen	Not-chosen
Prior	0.54	0.46
Chosen	0.71	0.29
Not-chosen	0.39	0.61

Group A had stronger bias towards chosen side, and switches sides less often.

Gaze Cascade Plots

- Plot the percentage of time viewing the chosen face for the last 2.5 seconds of each trial.
 - For Group A, the gaze cascade effect happened earlier and was stronger.
 - For Group B, the gaze cascade effect started later and was weaker.

Time in Exploration/Preference-biased Periods

- Probability in preference-biased period within a normalized timesegment of a trial.
 - Group B had a higher % in the beginning, although the cascade effect is weaker.
 - Group A entered preference-biased period later, but had stronger cascade effect.

(a) probability in preference-biased period

Number of Fixations

- Group A had more fixations (29) vs Group B (13.3)
 - Group A has more fixations in exploration and preference-biased periods than Group B.
 - Group A had more ROI switches (5.6) vs Group B (4.1)
- When normalizing for number of fixations in a trial
 - Groups did not differ in % of fixations in the two periods.
 - Group A had smaller % of ROI switches.

Group A tended to explore stimulus longer before switching to another stimulus.

Inferring Participant's Decision

- Using eye movements to infer people's decisions
 - Leave-one-trial-out cross-validation.
 - Combine left- and right-selected HMMs, and infer the final high-level state.
 - Using a percentage of fixations from the start of the trial.
 - Group B revealed their preference earlier.

Inference in Last 2 Seconds

- Infer the chosen face using the fixations from the last 2 seconds
 - Group A (0.93) was significantly higher than group B (0.73), p= .004.
 - The more similar to Group A, the higher the inference accuracy.

×

-5

-4

Group B ←

-3

-2

-1

AB scale

1

0.8

0.6

0.4

0.2

-6

accuracy

0

1

2

 \rightarrow Group A

3

4

 $imes 10^{-3}$

Inference using standard HMM

- Perform the same inference task using HMM
 - Average inference accuracy was higher for SHMM (0.81) vs HMM (0.64).
 - Shows the advantage of using switching HMM in tasks involving cognitive state changes.

Summary: Switching HMM

- Model changes in eye gaze patterns due to changes in high-level task.
- In preference decision making task
 - Discovered different types of cascade effect.
 - Model individual differences in gaze cascade effect and inference accuracy.

Outline

- Switching HMM: Modeling changes in Cognitive Task
- SMAC: Scanpath Modeling and Classification with HMMs
- Mini-Project: Finalize data analysis and work on project presentations

Gaze behaviour

Eye movements are an exceptionally rich source of information. They provide a high-resolution spatio-temporal measure of cognitive and visual processes.

What can we predict about the viewer from eye gaze?

- What are they looking at? What is their task? What will they do next?
- What are the markers that allow such a prediction?

Clustering Individuals' HMMs

- Learn an HMM from individual's eye fixations.
- Previous work focused on clustering HMMs to discover common patterns.
 - Individuals in each group have similar patterns...

• but does not say how the groups are different.

Classifying Individuals' HMMs

- Suppose we have additional information about the individual (e.g., their task)
 - We can train a classifier to predict the task from an individual's HMM.
 - The classifier is discriminatively trained, meaning that it finds differences in patterns that are diagnostic of the task.

HMM Classification

- Individual is represented with a vector of their HMMs parameters (prior, transition prob., ROI mean, ROI variance).
- Use linear discriminant analysis for classification.
 - LDA coefficients indicate which part of the HMM that is diagnostic for predicting the class.

Example HMM for Image Viewing

scanpaths

posterior probabilities

ROI 1 ROI 2 ROI 3

1

0.9

0.1

OL O

emission counts

Coutrot, Hsiao & Chan, Behavior Research Methods, 2017

Fixation number

10

Gaze-based Task Inference

Koehler's Dataset 158 participants 800 static images 3 tasks

Tasks

Gaze-based task inference

Results

- Leave-one-out cross-validation.
- 51.9 % correct classification of the task at hand (chance = 33 %).

Classifier performs better when there are salient objects.

LDA Coefficients

Gaze-based Stimuli Inference

Dataset

36 participants15 conversational videos2 auditory condition: with and without original soundtrack.

Results

81.2 % correct classification of the auditory condition (chance = 50 %).

Video with original soundtrack

Video without original soundtrack

free covariance

Summary

- HMMs can effectively capture information about the observer and what is being observed.
 - Can discover characteristic differences in eye gaze patterns.
- Toolbox available: SMAC with HMM.
 - http://antoinecoutrot.magix.net/public/code.html

scanpaths

emissions

Outline

- Switching HMM: Modeling changes in Cognitive Task
- SMAC: Scanpath Modeling and Classification with HMMs
- Mini-Project: Finalize data analysis and work on project presentations