# General Equilibrium for the Exchange Economy

Joseph Tao-yi Wang 2008/11/21

(Lecture 9, Micro Theory I)

### What We Learned from the 2x2 Economy?



- Pareto Efficient Allocation (PEA)
  - Cannot make one better off without hurting others
- Walrasian Equilibrium (WE)
  - When Supply Meets Demand
  - Focus on Exchange Economy First
- 1st Welfare Theorem: WE is Efficient
- 2<sup>nd</sup> Welfare Theorem: Any PEA can be supported as a WE
- These also apply to the general case as well!





- *n* Commodities: 1, 2, ..., *n*
- H Consumers:  $h = 1, 2, \dots, H$ 
  - ullet Consumption Set:  $X^h \subset \mathbb{R}^n$
  - Endowment:  $\omega^h = (\omega_1^h, \cdots, \omega_n^h) \in X^h$
  - Consumption Vector:  $x^h = (x_1^h, \cdots, x_n^h) \in X^h$
  - Utility Function:  $U^h(x^h) = U^h(x_1^h, \cdots, x_n^h)$
  - Aggregate Consumption and Endowment:

$$x = \sum_{h=1}^{H} x^h$$
 and  $\omega = \sum_{h=1}^{H} \omega^h$ 

Edgeworth Cube (Hyperbox)





- A allocation is feasible if
- The sum of all consumers' demand doesn't exceed aggregate endowment:  $x \omega \le 0$
- A feasible allocation  $\overline{x}$  is Pareto efficient if
- there is no other feasible allocation x that is
- strictly preferred by at least one:  $U^i(x^i) > U^i(\overline{x}^i)$
- and is weakly preferred by all:  $U^h(x^h) \geq U^h(\overline{x}^h)$





- Price-taking: Prices  $p \ge 0$
- Consumers: h=1, 2, ..., H
  - Endowment:  $\omega^h = (\omega_1^h, \cdots, \omega_n^h)$   $\omega = \sum_h \omega^h$
  - Wealth:  $W^h = p \cdot \omega^h$
  - Budget Set:  $\{x^h \in X^h | p \cdot x^h \leq W^h\}$
  - Consumption Set:  $\overline{x}^h = (\overline{x}_1^h, \cdots, \overline{x}_n^h) \in X^h$
- Most Preferred Consumption:

 $U^h(\overline{x}^h) \geq U^h(x^h)$  for all  $x^h$  such that  $p \cdot x^h \leq W^h$ 

• Vector of Excess Demand:  $\overline{e} = \overline{x} - \omega$ 

# Definition: Walrasian Equilibrium Prices



- The price vector  $p \ge 0$  is a Walrasian Equilibrium price vector if
- there is no market in excess demand ( $\overline{e} \leq 0$ ),
- and  $p_j = 0$  for any market that is in excess supply ( $\overline{e}_j < 0$ ).
- We are now ready to state and prove the "Adam Smith Theorem" (WE → PEA)...

### Proposition 3.2-1: First Welfare Theorem



- If preferences of each consumer satisfies LNS, then the Walrasian Equilibrium allocation is Pareto efficient.
- Proof:
- 1. Since  $U^h(x^h) > U^h(\overline{x}^h) \Rightarrow p \cdot x^h > p \cdot \omega^h$
- 2. By LNS, $U^h(x^h) \geq U^h(\overline{x}^h) \Rightarrow p \cdot x^h \geq p \cdot \omega^h$
- 3. Then,  $\sum_{h} (p \cdot x^h p \cdot \omega^h) = p \cdot (x \omega) > 0$
- Which is not feasible  $(x \omega > 0)$ , since  $p \ge 0$

### First Welfare Theorem: WE → PE



- 1. Why  $U^h(x^h) > U^h(\overline{x}^h) \Rightarrow p \cdot x^h > p \cdot \omega^h$ ?  $\overline{x}^h \text{ solves } \max_{x^h} \left\{ U^h(x^h) \middle| p \cdot x^h \leq p \cdot \omega^h \right\}$ 2. Why  $U^h(x^h) \geq U^h(\overline{x}^h) \Rightarrow p \cdot x^h \geq p \cdot \omega^h$ ?
- Suppose not, then  $p \cdot x^h$
- All bundles in sufficiently small neighborhood of  $x^h$  is in budget set  $\{x^h \in X^h | p \cdot x^h \leq W^h\}$
- LNS requires  $a\hat{x}^h$  in this neighborhood to have  $U^h(\hat{x}^h) > U^h(x^h)$ , a contradiction.

## Lemma 3.2-2: Quasi-concavity of V



- If  $U^h, h = 1, \dots, H$  is quasi-concave,
- Then so is the indirect utility function

$$V^{i}(x) = \max_{x^{h}} \left\{ U^{i}(x^{i}) \middle| \sum_{h=1}^{H} x^{h} \le x, \right\}$$

$$U^h(x^h) \ge U^h(\hat{x}^h), h \ne i$$

## Lemma 3.2-2: Quasi-concavity of *V*



• Proof: Consider  $V^i(b) \geq V^i(a)$ , for any  $c = (1 - \lambda)a + \lambda b$ , need to show  $V^i(c) \geq V^i(a)$ 

Assume 
$$\{a^h\}_{h=1}^H$$
 solves  $V^i(a)$ ,  $\{b^h\}_{h=1}^H$  solves  $V^i(b)$ ,

$$\{c^h\}_{h=1}^H$$
 is feasible since  $c^h = (1-\lambda)a^h + \lambda b^h$   
 $\Rightarrow V^i(c) \ge U^i(c^i)$ 

Now we only need to prove  $U^i(c^i) \geq V^i(a)$ .

## Lemma 3.2-2: Quasi-concavity of V



- Since  $\{a^h\}_{h=1}^H$  solves  $V^i(a)$ ,  $\{b^h\}_{h=1}^H$  solves  $V^i(b)$ ,  $U^i(a^i) = V^i(a)$  and  $U^i(b^i) = V^i(b) \ge V^i(a)$   $\Rightarrow U^i(c^i) \ge V^i(a)$  by quasi-concavity of  $U^i$   $\Rightarrow V^i(c) > U^i(c^i) > V^i(a)$
- Note: (By quasi-concavity of  $U^h$ )

$$U^{h}(a^{h}) \geq U^{h}(\hat{x}^{h}) \text{ for all } h \neq i$$

$$U^{h}(b^{h}) \geq U^{h}(\hat{x}^{h}) \text{ for all } h \neq i$$

$$U^{h}(b^{h}) \geq U^{h}(\hat{x}^{h}) \text{ for all } h \neq i$$



- Suppose  $X^h = \mathbb{R}^n_+$ , and utility functions  $U^h(\cdot)$
- continuous, quasi-concave, strictly monotonic.
- If  $\{\hat{x}^h\}_{h=1}^H$  is Pareto efficient, then there exist a price vector  $p \geq 0$  such that

$$U^h(x^h) > U^h(\hat{x}^h) \Rightarrow p \cdot x^h > p \cdot \hat{x}^h$$

• Proof:



- Proof: Assume nobody has zero allocation
  - Relaxing this is easily done...
- By Lemma 3.2-2,  $V^i(x)$  is quasi-concave
- $\bullet \ V^i(x)$  is strictly increasing since  $U^i(\cdot)$  is also
  - (and any increment could be given to consumer *i* )
- $\bullet$  Since  $\left\{\hat{x}^h\right\}_{h=1}^H$  is Pareto efficient,  $V^i(\omega) = U^i(\hat{x}^i)$
- Since  $U^i(\cdot)$  is strictly increasing,

$$\sum_{h=1}^{H} \hat{x}^h = \omega$$



- Proof (Continued):
- Since  $\omega$  is on the boundary of  $\{x|V^i(x) \geq V^i(\omega)\}$
- By the Supporting Hyperplane Theorem, there exists a vector  $p \neq 0$  such that

$$V^{i}(x) > V^{i}(\omega) \Rightarrow p \cdot x > p \cdot \omega$$
  
and  $V^{i}(x) \geq V^{i}(\omega) \Rightarrow p \cdot x \geq p \cdot \omega$ 

• Claim: p > 0, then,  $U^h(x^h) \geq U^h(\hat{x}^h) \Rightarrow p \cdot \sum_{h=1}^H x^h \geq p \cdot \omega = p \cdot \sum_{h=1}^H \hat{x}^h$ 



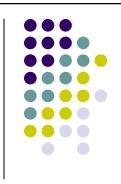
- Proof (Continued):
- Why p>0? If not, define  $\delta=(\delta_1,\cdots,\delta_n)>0$  such that  $\delta_j>0$  iff  $p_j<0$  (others = 0)
- Then,  $V^i(\omega + \delta) > V^i(\omega)$  and  $p \cdot (\omega + \delta)$
- Contradicting (result from the Surporting Hyperplane Theorem)

$$U^h(x^h) \ge U^h(\hat{x}^h) \Rightarrow p \cdot \sum_{h=1}^n x^h \ge p \cdot \omega$$



- Since  $U^h(x^h) \ge U^h(\hat{x}^h) \Rightarrow p \cdot \sum_{h=1}^n x^h \ge p \cdot \sum_{h=1}^n \hat{x}^h$
- Set  $x^k = \hat{x}^k$ ,  $k \neq h$ , then for consumer h  $U^h(x^h) \geq U^h(\hat{x}^h) \Rightarrow p \cdot x^h \geq p \cdot \hat{x}^h$
- Need to show strict inequality implies strict...
- If not, then  $U^h(x^h) > U^h(\hat{x}^h) \Rightarrow p \cdot x^h = p \cdot \hat{x}^h$
- Hence,  $p \cdot \lambda x^h for all <math>\lambda \in (0,1)$
- $U^h$  continuous  $\Rightarrow U^h(\lambda x^h) > U^h(\hat{x}^h)$  for large  $\lambda$
- Contradiction!





- Pareto Efficiency:
  - Cannot make one better off without hurting others
- Walrasian Equilibrium: market clearing prices
- Welfare Theorems:
  - First: Walrasian Equilibrium is Pareto Efficient
  - Second: Pareto Efficient allocations can be supported as Walrasian Equilibria (with transfer)
- Homework: Read "Thinking Outside the Box" <a href="http://essentialmicroeconomics.com/08R3/OutsideTheBox.pdf">http://essentialmicroeconomics.com/08R3/OutsideTheBox.pdf</a>
- Do Exercise 3.2-1~3