Budget Constrained Choice with Two Commodities

Joseph Tao-yi Wang 2008/10/17

(Lecture 5, Micro Theory I)

The Consumer Problem

- We have some powerful tools:
- Constrained Maximization (Shadow Prices)
- Envelope Theorem (Changing Environment)
- How can they help us understand behavior of a consumer?
- Either "maximizing utility while facing a budget constraint", or "minimizing cost while maintaining a certain welfare level"...

Key Problems to Consider

- Consumer Problem: How can consumer's Utility Maximization result in demand?
- Income Effect: How does an increase (or decrease) in income (budget) affect demand?
- Dual Problem: How is Minimizing Expenditure related to Maximizing Utility?
- Substitution Effect: How does an increase in commodity price affect compensated demand?
- Total Price Effect = S. E. + I. E.

Why do we care about this? An Example in Public Policy

- Taiwan's ministry of defense has to decide whether to buy more fighter jets, or more submarines given a tight budget
- How does the military rank each combination?
- How do they choose which combination to buy?
- How would a price change affect their decision?
- How would a boycott in defense budget affect their decision?

Continuous Demand Function

A Consumer with income I, facing prices p_{1}, p_{2}

$$
\max _{x}\left\{U(x) \mid p \cdot x \leq I, x \in \mathbb{R}_{+}^{2}\right\}
$$

- Assume:
- LNS (local non-satiation)
- Consumer spends all his/her income
- $U(x)$ is continuous, strictly quasi-concave on \mathbb{R}_{+}^{2}
- There is a unique solution $x^{0}=x(p, I)$
- Then, by Proposition 2.2-1,

$$
x(p, I) \text { must be continuous. }{ }_{5}
$$

Stronger Convenience Assumptions for this Lecture

- Assume:
- $U(x)$ is continuously differentiable on \mathbb{R}_{+}^{2}
- FOC is gradient vectors of utility (+ constraint)
- LNS-plus: ∂U

$$
\frac{\partial U}{\partial x}(x)>0 \text { for all } x \in \mathbb{R}_{+}^{2}
$$

- At least one commodity has MU >0
- No corners:

$$
\lim _{x_{j} \rightarrow 0} \frac{\partial U}{\partial x_{j}}=\infty, j=1,2
$$

- Always wants to consumer some of everything

Indifference Curve Analysis (Lagrangian Version)

A Consumer with income I, facing prices p_{1}, p_{2}

$$
\max _{x}\left\{U(x) \mid p \cdot x \leq I, x \in \mathbb{R}_{+}^{2}\right\}
$$

Lagrangian is $\mathfrak{L}=U+\lambda(I-p \cdot x)$

$$
\begin{aligned}
(F O C) \quad \frac{\partial \mathfrak{L}}{\partial x_{j}} & =\frac{\partial U}{\partial x_{j}}\left(x^{*}\right)-\lambda p_{j}, j=1,2 \\
\frac{\frac{\partial U}{\partial x_{1}}}{p_{1}} & =\frac{\frac{\partial U}{\partial x_{2}}}{p_{2}}=\lambda
\end{aligned}
$$

Meaning of FOC

1. Same marginal value for last dollar spent on each commodity

$$
\frac{\frac{\partial U}{\partial x_{1}}}{p_{1}}=\frac{\frac{\partial U}{\partial x_{2}}}{p_{2}}=\lambda
$$

- Does Taiwan get same MU on fighter jets and submarines?

2. Indifference Curve tangent to Budget Line

$$
M R S\left(x^{*}\right)=\frac{\frac{\partial U}{\partial x_{1}}}{\frac{\partial U}{\partial x_{2}}}=\frac{p_{1}}{p_{2}}
$$

Income Effect

$$
\mathcal{E}\left(x_{j}, I\right)=\frac{I}{x_{j}} \frac{\partial x_{j}}{\partial I}>0(\text { normal goods })
$$

Income Effect

- Slope of IEP steeper than line joining 0 and x^{*}

$$
\left.\frac{d x_{2}}{d x_{1}}\right|_{I E P}=\frac{\frac{\partial x_{2}}{\partial I}}{\frac{\partial x_{1}}{\partial I}}>\frac{x_{2}^{*}}{x_{1}^{*}}
$$

- Or,

$$
\mathcal{E}\left(x_{2}, I\right)=\frac{I}{x_{2}} \frac{\partial x_{2}}{\partial I}>\mathcal{E}\left(x_{1}, I\right)=\frac{I}{x_{1}} \frac{\partial x_{1}}{\partial I}
$$

- Lemma 2.2-2: Expenditure share weighted income elasticity add up to 1
- So, $\mathcal{E}\left(x_{2}, I\right)>1>\mathcal{E}\left(x_{1}, I\right)$

Three Examples

- Quasi-Linear Convex Preference

$$
U(x)=v\left(x_{1}\right)+\alpha x_{2}
$$

- Cobb-Douglas Preferences

$$
U(x)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}, \alpha_{1}, \alpha_{2}>0
$$

- CES Utility Function

$$
U(x)=\left(\alpha_{1} x_{1}^{1-\frac{1}{\theta}}+\alpha_{2} x_{2}^{1-\frac{1}{\theta}}\right)^{\frac{1}{1-\frac{1}{\theta}}}
$$

Dual Problem: Minimizing Expenditure

Consider the least costly way to achieve \bar{U}

$$
M(p, \bar{U})=\min _{x}\{p \cdot x \mid U(x) \geq \bar{U}\}
$$

For $x(p, I)$ solving $\max _{x}\{U(x) \mid p \cdot x \leq I\}$
$U(x(p, I))$ is strictly increasing over I
For any \bar{U}, there is unique income M such that

$$
\bar{U}=U(x(p, M))
$$

Can solve $M(p, \bar{U})$ by inverting $\bar{U}=U(x(p, M))$

Substitution Effect for Compensated Demand

- Compensated Demand
$x^{c}(p, \bar{U})$ solves $M(p, \bar{U})=\min _{x}\{p \cdot x \mid U(x) \leq \bar{U}\}$
- By Envelope Theorem:
- Effect of Price Change $\frac{\partial M}{\partial p_{j}}=x^{c}\left(p, U^{0}\right)$
- How much more does Taiwan have to pay if the price of submarines increase (to maintain the same level of defense)?

Elasticity of Substitution (for Compensated Demand)

$$
\begin{aligned}
& \sigma=\mathcal{E}\left(\frac{x_{2}^{c}}{x_{1}^{c}}, p_{1}\right) \\
& =\frac{\mathcal{E}\left(x_{2}^{c}, p_{1}\right)}{k_{1}} \\
& =-\frac{\mathcal{E}\left(x_{1}^{c}, p_{1}\right)}{1-k_{1}} \\
& k_{1}=\frac{p_{1} x_{1}}{p \cdot x}
\end{aligned}
$$

Verify that $\sigma=\theta$ for CES...

Total Price Effect = Income Effect + Substitution Effect

- For $M(p, \bar{U}) \& x_{1}(p, I)$
- Compensated Demand:
$x_{1}^{c}(p, \bar{U})=x_{1}(p, M(p, \bar{U}))$

$$
\frac{\partial x_{1}^{c}}{\partial p_{1}}=\frac{\partial x_{1}}{\partial p_{1}}+\frac{\partial x_{1}}{\partial I} \cdot \frac{\partial M}{\partial p_{1}}
$$

$$
\left(\frac{\partial M}{\partial p_{1}}=x_{1}\right)
$$

- Slutsky Equation:

$$
U(x) \geq U^{0}
$$

$$
\underbrace{\frac{\partial x_{1}}{\partial p_{1}}}_{A \rightarrow B}=\underbrace{\frac{\partial x_{1}^{c}}{\partial p_{1}}}_{A \rightarrow C}-\underbrace{x_{1} \cdot \frac{\partial x_{1}}{\partial I}}_{C \rightarrow B}
$$

Total Price Effect = Income Effect + Substitution Effect

- Slutsky Equation:

$$
\frac{\partial x_{1}}{\partial p_{1}}=\frac{\partial x_{1}^{c}}{\partial p_{1}}-x_{1} \cdot \frac{\partial x_{1}}{\partial I}
$$

- Elasticity Version:

$$
\frac{p_{1}}{x_{1}} \frac{\partial x_{1}}{\partial p_{1}}=\frac{p_{1}}{x_{1}} \frac{\partial x_{1}^{c}}{\partial p_{1}}-\frac{p_{1} x_{1}}{I} \frac{I}{x_{1}} \cdot \frac{\partial x_{1}}{\partial I}
$$

- Or,

$$
\mathcal{E}\left(x_{1}, p_{1}\right)=\mathcal{E}\left(x_{1}^{c}, p_{1}\right)-k_{1} \cdot \mathcal{E}\left(x_{1}, I\right)
$$

Summary of 2.2

- Consumer Problem: Maximize Utility
- Income Effect
- Dual Problem: Minimize Expenditure
- Substitution Effect:
- =Compensated Price Effect
- Elasticity of Substitution
- Total Price Effect:
- = Compensated Price Effect + Income Effect
- Homework: Exercise 2.2-1~7

