Supporting Prices and Convexity

Joseph Tao-yi Wang 2008/9/19

(Lecture 1, Micro Theory I)

Overview of Chapter 1

- Theory of Constrained Maximization
 - Why should we care about this?
- What is Economics?
- Economics is the study of how society manages its scarce resources (Mankiw, Ch.1)
 - "Economics is the science which studies human behavior as a relationship between given ends and scarce means which have alternative uses." (Lionel Robbins, 1932)

Overview of Chapter 1

- Other Historical Accounts:
 - Economics is the "study of how societies use scarce resources to produce valuable commodities and distribute them among different people." (Paul A. Samuelson, 1948)
- My View: Economics is a study of institutions and human behavior (reactions to institutions)
- Either way, constrained maximization is key...

Overview of Chapter 1

- Tools Introduced in Chapter 1:
- 1. Supporting Hyperplanes (and Convexity)
- 2. First Order Conditions (Kuhn-Tucker)
- 3. Envelope Theorem
- But why do I need to know the math?
 - Along the way, please let me know if you expect to use these tools in the future (in work)...

Publication Reward Problem

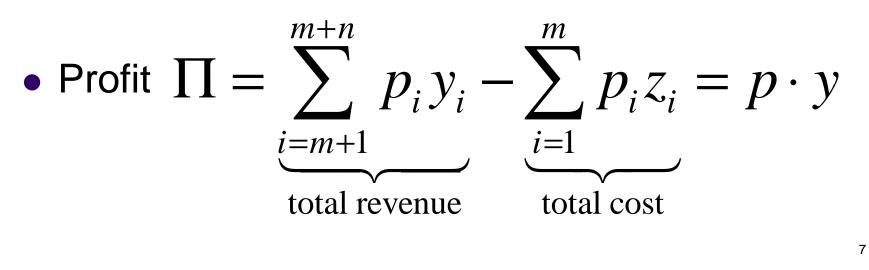
- Example: How should NTU reward its professors to publish journal articles?
 - Should NTU pay, say, NT\$300,000 per article published in Science or Nature?
- Well, it depends...
- Peak the answer ahead:
 - Yes, if the production set is convex.
 - No, if, for example, there is initial increasing returns to scale.

Supporting Prices

- More generally, can prices and profit maximization provide appropriate incentives for all efficient production plans?
 - Is there a price vector that supports each efficient production plan?
- (Yes, but when?)
- Need some definitions first...

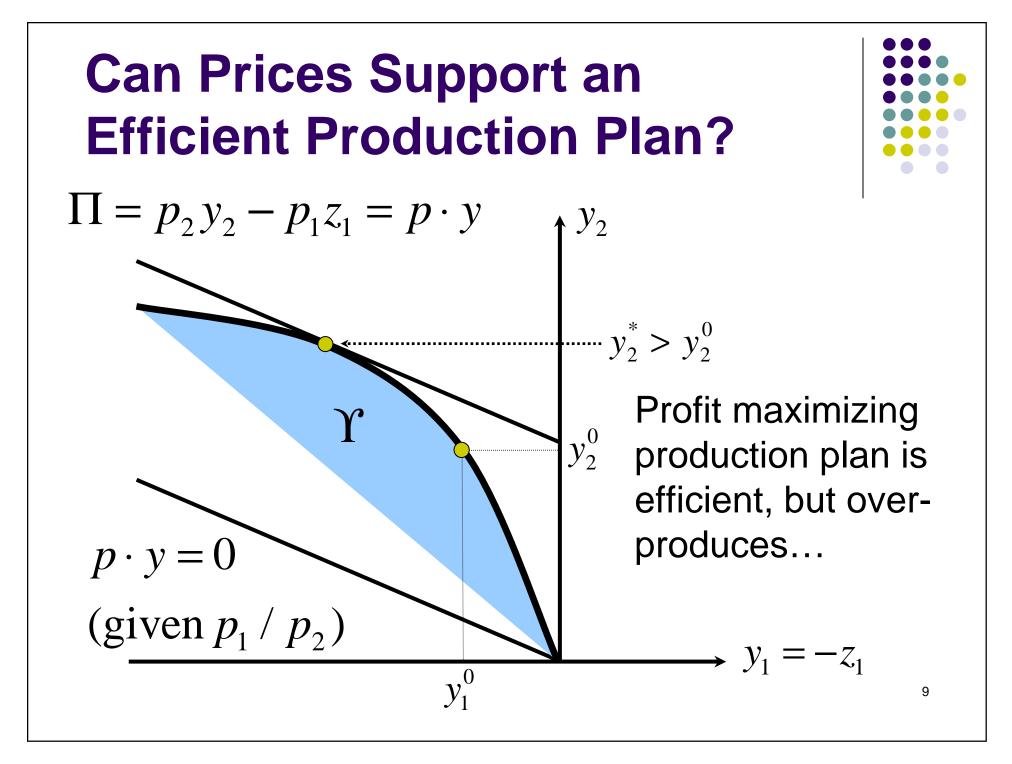
Production Plant

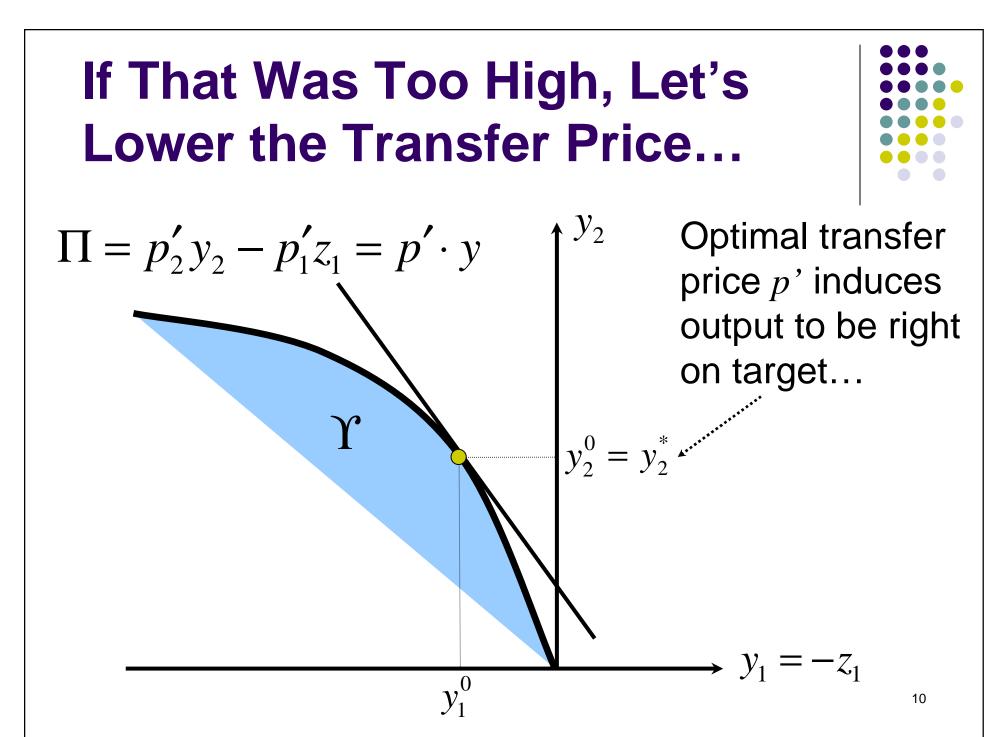
- A production facility can produce *n* output $q = (q_1, ..., q_n)$ using up to *m* input $z = (z_1, ..., z_m)$
- Production Plan $y = (-z_1, ..., -z_m, q_1, ..., q_n)$
- Price vector $p = (p_1, ..., p_{m+n})$

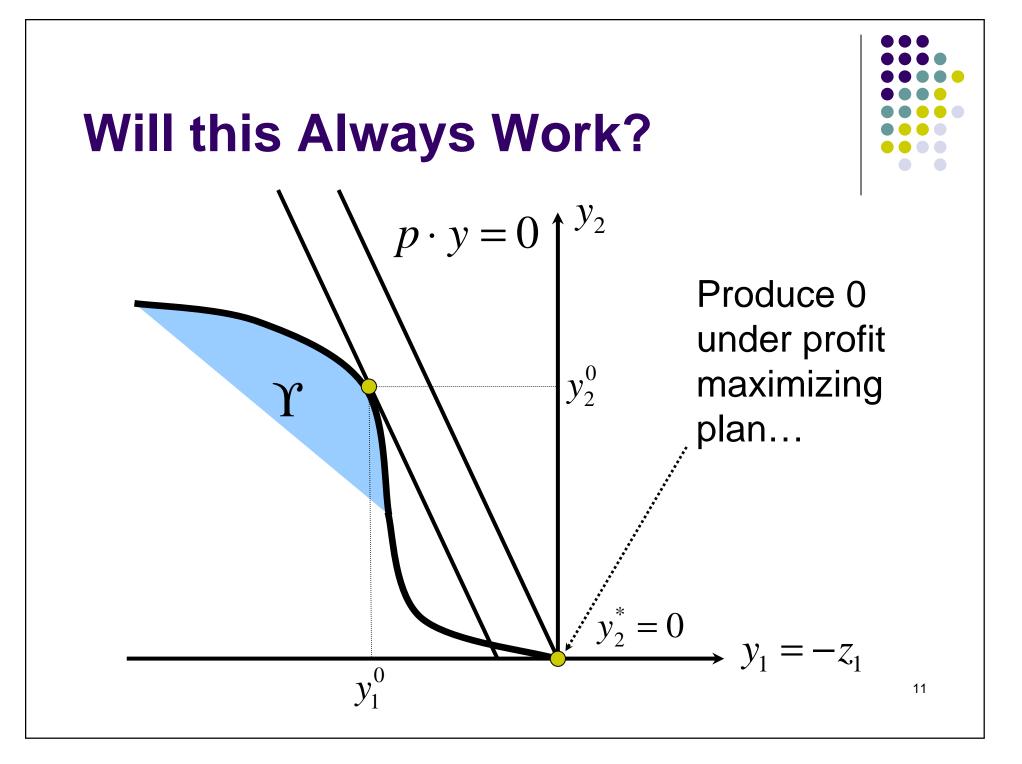


Production Plan

- Production Set Υ =Set of Feasible Production Plan
- y is production efficient (=non-wasteful) if There is no y∈ Y such that y > y
 Note: y ≥ y if y_j ≥ y_j for all j y > y if inequality is strict for some j







What Made It Fail?

- The last production set was NOT convex.
- *S* is convex iff for all $y^0, y^1 \in S$, $y^{\lambda} = \lambda \cdot y^0 + (1 - \lambda) \cdot y^1 \in S$
- Is it true that we can use prices to guide production decisions as long as production sets are convex?

Supporting Hyperplane Theorem

• Proposition 1.1-1:

Suppose Υ is closed and convex, and y^0 lies on the boundary of Υ . Then there exists $p \neq 0$, such that (i) for all $y \in \Upsilon$, $p \cdot y \leq p \cdot y^0$, and (ii) for all $y \in \inf \Upsilon$, $p \cdot y .$

Special Case of Supporting Hyperplane Theorem

• "Proposition" 1.1- "1.5": The production set Υ is the upper contour set $\{y \mid h(y) \ge h(y^0)\}$ of h, quasi-concave, differentiab Suppose the gradient vector of h is non-zero at y^0 . Define $p = -\frac{\partial h}{\partial y}(y^0)$, then $p \cdot y \leq p \cdot y^0$ for all $y \in \Upsilon$. 14

Quasi-Concavity

f is quasi-concave if the upper contour set of *f* set are convex. Equivalently, for any y⁰, y¹ and convex combination

$$y^{\lambda} = \lambda \cdot y^{0} + (1 - \lambda) \cdot y^{1},$$

$$f(y^{\lambda}) \ge \min\left\{f(y^{0}), f(y^{1})\right\}.$$

- Why is this useful?
 - Because we have...

Quasi-Concavity

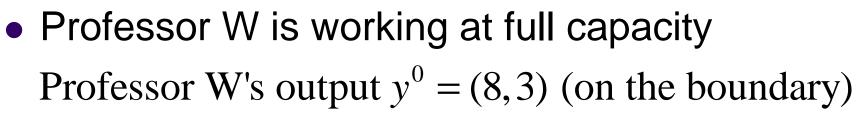
- If *f* is differentiable and quasi-concave, then $f(y) \ge f(y^0)$ implies $\frac{\partial f}{\partial x}(y^0) \cdot (y - y^0) \ge 0$
- This tells us how to calculate the supporting prices (under this special case)...

Example

- A professor has 25 units of "brain-power"
- Allocates z_1 units to produce TSSCI papers Produce $y_1 = 2\sqrt{z_1}$ number of TSSCI papers
- Allocates z_2 units to produce SSCI papers Produce $y_2 = \sqrt{z_2}$ number of SSCI papers
- Set of feasible output is

$$\Upsilon = \left\{ y \mid h(y) = 25 - \frac{1}{4} y_1^2 - y_2^2 \right\}$$

Example



What kind of reward scheme can support this?

$$p = -\frac{\partial h}{\partial y}(y^0) = \left(\frac{1}{2}y_1^0, 2y_2^0\right) = (4, 6)$$

• How can university induce $y^1 = (2, 2\sqrt{6}) \approx (2, 5)$? $\frac{\partial h}{\partial t} = (1, 1, 2, 1) \quad (1, 4, \sqrt{6}) \approx (1, 10)$

$$p = -\frac{\partial n}{\partial y}(y^{1}) = \left(\frac{1}{2}y_{1}^{1}, 2y_{2}^{1}\right) = (1, 4\sqrt{6}) \approx (1, 10)$$

Separating Hyperplane Theorem

Proposition 1.1-2: Suppose S and T are convex sets with a common boundary point $s^0 = t^0$ and no common interior points. Then there is some p such that, for all $s \in S$ and $t \in T$, $p \cdot s \leq p \cdot t$. (Inequality strict if either s or t is an interior.)

Separating Hyperplane Theorem

Proof of Proposition 1.1-2: Define $\Upsilon = S - T$, then $s^0 - t^0 = 0 \in \Upsilon$ If Υ is convex (verify this!!!), then... Supporting Hyperplane Theorem says: there is some $p \neq 0$ such that, for all $y \in \Upsilon$, $p \cdot y \leq p \cdot (s^0 - t^0) = 0.$ Since y = s - t for some $s \in S, t \in T$. $p \cdot s \leq p \cdot t$ for all $s \in S, t \in T$.

20

Positive Prices (Free Disposal)

- Two hyperplane theorems have economic meaning if prices are positive
 - Need another assumption
- Free Disposal

For any feasible produciton plan $y \in \Upsilon$ and any $\delta > 0$, the production plan $y - \delta$ is also feasible.

Supporting Prices

- With free disposal, we can prove:
- Proposition 1.1-3: If y⁰ is a boundary point of a convex sets Υ and the free disposal assumption holds, then Then there exist a price vector p ≥ 0 such that p · y ≤ p · y⁰ for all y ∈ Υ. (Moreover, if 0 ∈ Υ, then p · y⁰ ≥ 0.)

Supporting Prices

 Proof of Proposition 1.1-3: Supporting Hyperplane Theorem says: there is some $p \neq 0$ such that, for all $y \in \Upsilon$, $p \cdot (y^0 - y) \ge 0$. Now need to show $p_i \ge 0$. By free disposal, $y' = y^0 - \delta \in \Upsilon$ for all $\delta > 0$. Setting $\delta = (1, 0, ..., 0), p \cdot (y^0 - y') = p_1 \ge 0.$ Setting $\delta = (0, 1, 0, ..., 0), p \cdot (y^0 - y') = p_2 \ge 0.$...Setting $\delta = (0, ..., 0, 1), p \cdot (y^0 - y') = p_n \ge 0.23$

Back to Publication Rewards

- Should NTU really pay NT\$300,000 per article published in Science or Nature?
 - Is the production set for Science/Nature convex?
- What would be a better incentive scheme to encourage publications in Science/Nature?
 - Efficient Wages (High Fixed Wages)?
 - Tenure?
 - Endowed Chair Professorships?

Back to Publication Rewards

- What are some tasks do you expect piecerate incentives to work?
 - Sales
 - Real estate agents
- What about a fixed payment?
 - Secretaries and Office Staff
 - Store Clerk
- What about other incentives schemes?
 - That's for you to answer (in contract theory)!

Summary of 1.1

- Input = Negative Output
- Vector space of y
- Convexity (quasi-concavity) is the key for supporting prices (=linearization)
- What is a good incentive scheme to induce professor to publish in Science and Nature?
- Consumer = Producer
- Homework: Exercise 1.1-1~3

