Equilibrium Futures Prices

Joseph Tao-yi Wang 2008/12/19

1

(Lecture 14, Micro Theory I)

What We Learned about Equilibrium?

- Pareto Efficient Allocation (PEA) Optimum
 - Cannot make one better off without hurting others
- Walrasian Equilibrium (WE) Price Vector
 - When Supply Meets Demand
 - Even if there is only one person Robinson Crusoe
- 1st Welfare Theorem: WE are PEA
 - Schizophrenic Robinson Crusoe achieves optimum
- 2nd Welfare Theorem: PEA supported as WE
- Also works under inter-temporal choices...

Walrasian Equilibrium

- Price-taking: Prices p > 0
- Firm *f* chooses production plan $y^f(p)$ so it solves $\max_{y} \left\{ p \cdot y^f | y^f \in \gamma^f \right\}, f = 1, \cdots, F$
- Consumer *h* has θ^{hf} ownership shares in firm *f* and earns dividends equal to $\Pi^f(p) = p \cdot y^f(p)$
- Consumer *h* chooses consumption $x^h(p)$ so it solves

$$\max_{x} \left\{ U^{h}(x^{h}) \left| p \cdot x^{h} \leq p \cdot \omega^{h} + \sum_{f=1}^{r} \theta^{hf} \Pi^{f} \right\}_{3} \right\}$$

Reinterpreting the General Model as Spot & Futures

- **2 Periods:** *t*=1, 2
- Firm's Production Plans $y^f = (y_1^f, y_2^f)$
 - Each period: $y_t^f = (y_{t1}^f, \cdots, y_{tn}^f), t = 1, 2$
- Consumer's Consumption Vectors: $x^h = (x_1^h, x_2^h)$
- Price vector: $p = (p_1, p_2)$
- All trade is done in Period 1:
- Spot price vector: $p_1 = (p_{11}, \cdots, p_{1n})$
- Futures price vector: $p_2 = (p_{21}, \cdots, p_{2n})$

Reinterpreting Spot & Futures as Borrowing & Lending

- Market interest rate: r; Period 2 Spot price: p_2^s
- Firm's Dividends and Borrowing:

• Period 1:
$$d_1^f = p_1 \cdot y_1^f + B_1^f$$

- Period 2: $d_2^f = p_2^s \cdot y_2^f B_1^f(1+r)$
- PV is $d_1^f + \frac{d_2^f}{1+r} = p_1 \cdot y_1^f + \frac{1}{1+r} p_2^s \cdot y_2^f$
- Relationship with Futures: $p_2^s = (1+r)p_2$ $p_1 \cdot y_1^f + p_2 \cdot y_2^f = \Pi^f(p)$

Reinterpreting Spot & Futures as Borrowing & Lending

 Consumer's Budget Constraint and Saving: • Period 1: $p_1 \cdot x_1^h \le p_1 \cdot \omega_1^h + \sum \theta^{hf} d_1^f - S_1^h$ f=1• Period 2: $p_2^s \cdot x_2^h \le p_2^s \cdot \omega_2^h + \sum_{i=1}^{r} \theta^{hf} d_2^f + (1+r)S_1^h$ • PV is $p_1 \cdot x_1^h + \frac{1}{1+r}p_2^s \cdot x_2^h$ $\leq p_1 \cdot \omega_1^h + \frac{1}{1+r} p_2^s \cdot \omega_2^h + \sum_{f=1}^r \theta^{hf} \left[\prod^f (p) \right]_{\mathfrak{s}}$

Rational Expectations

- For this to work, we need:
- 1. Rational Expectations: Agents correctly forecast equilibrium future spot prices
 - May not be true, but okay if arbitrageurs fix it...
- 2. No Bankruptcy: Consumers have to live up to their promises for lenders to lend to them
- 3. No Uncertainty (about future preferences and technology): Can be extended in Ch. 7.

Example

- Two goods, two periods: $x_t = (x_{t1}, x_{t2})$
- All consumers have same log preferences
- $U = u(x_1) + \frac{1}{2}u(x_2)$ where $u(x_t) = 2\ln x_{t1} + \ln x_{t2}$
- Endowments: $\omega_1 = (120, 120), \quad \omega_2 = (0, 0)$
- Technology: Investment z_{1i} to earn q_{2i} later...

$$q_{21} = 2z_{11}, \quad q_{22} = 4z_{12}$$

• Solve for optimal consumption, Walrasian Equilibrium spot and future prices (and p_2^s)

Summary of 5.5

- Time can be incorporated as a Day 1 Market
 - Spot and Future prices
- Or, as a Rational Expectation Equilibrium with Borrowing and Lending
 - may not hold if:
 - 1. No arbitrageurs to ensure expectations are rational
 - 2. Consumers could go bankrupt to avoid repaying
 - 3. Uncertain about future preferences or technology
- Homework: Exercise 5.5-1~6