General Equilibrium and Efficiency with Production

Joseph Tao-yi Wang 2008/12/12

(Lecture 13, Micro Theory I)

What We Learned from Exchange Economy and Robinson Crusoe?

- Pareto Efficient Allocation (PEA) Optimum
 - Cannot make one better off without hurting others
- Walrasian Equilibrium (WE) Price Vector
 - When Supply Meets Demand
 - Even if there is only one person Robinson Crusoe
- 1st Welfare Theorem: WE are PEA
 - Schizophrenic Robinson Crusoe achieves optimum
- 2nd Welfare Theorem: PEA supported as WE
- These also apply to the general case as well!

The General Model: Firms

- *F* Firms: *f*=1, 2, ..., *F*
- Production Plan $y^f = (y_1^f, \cdots, y_n^f) \in \gamma^f$
- Production Set $\gamma^f \subset \mathbb{R}^n$
- Production Plan for the Economy $\{y^f\}_{f=1}^{F}$
- Aggregate Production Plan

$$y = \sum_{f=1}^{r} y^{f}$$

 $\boldsymbol{\Gamma}$

• Aggregate Production Set γ

The General Model: Consumers

- *n* Commodities (are private): 1, 2, ..., *n*
- *H* Consumers: $h = 1, 2, \cdots, H$
 - Consumption Set: $X^h \subset \mathbb{R}^n$
 - Endowment: $\omega^h = (\omega_1^h, \cdots, \omega_n^h) \in X^h$
 - Consumption Vector: $x^h = (x_1^h, \cdots, x_n^h) \in X^h$
 - Utility Function: $U^h(x^h) = U^h(x_1^h, \cdots, x_n^h)$
 - Consumption Allocation: ${x^h}_{h=1}^H$
 - Aggregate Consumption and Endowment: $x = \sum_{h=1}^{H} x^h$ and $\omega = \sum_{h=1}^{H} \omega^h$

4

The General Model: Shareholdings

- All firms are owned by consumers.
- Consumer *h* has θ^{hf} ownership shares in firm *f*
- Ownership share must sum up to one:

$$\sum_{h=1}^{H} \theta^{hf} = 1, f = 1, \cdots, F$$

The General Model: Feasible Allocation

- A allocation is feasible if
- The sum of the <u>net</u> demands doesn't exceed aggregate production plan: $x - \omega \le y$
- A feasible plan for the economy $\{\hat{x}^h\}_{h=1}^H, \{\hat{y}^f\}_{f=1}^F$ is Pareto efficient if
- there is no other feasible plan $\{x^h\}_{h=1}^H, \{y^f\}_{f=1}^F$
- that is
- strictly preferred by at least one:
- and weakly preferred by all:

 $U^i(x^i) > U^i(\hat{x}^i)$

 $U^h(x^h) \ge U^h(\hat{x}^h)$

Walrasian Equilibrium

- Price-taking firms and consumers: Prices p > 0
- Consumers: *h*=1, 2, ..., *H*
 - Firm Profit: $p \cdot y^f$
 - Total Dividend Payments: $\sum \theta^{hf} p \cdot y^{f}$

• Wealth:
$$W^h = p \cdot \omega^h + \sum_f^J heta^{hf} p \cdot y^f$$

- Budget Set: $\{x^h \in X^h | p \cdot x^h \le W^h\}$
- Consumer interest best served by profit maximzing firm managers

Walrasian Equilibrium

- **Price-taking**: Prices p > 0
- Firm f chooses production plan \overline{y}^f to max. profit $p \cdot \overline{y}^f \ge p \cdot y^f$, for all $y^f \in \gamma^f$, $f = 1, \cdots, F$
- Consumer h chooses most preferred consumption in her budget set:
 x̄^h ≻_h x^h for all x^h such that p ⋅ x^h ≤ W^h
- Vector of Excess Demand: $\overline{e} = \overline{x} \omega \overline{y}$
 - Total consumption $\overline{x} = \sum \overline{x}^h$
 - Total production $\overline{y} = \sum \overline{y}^f$

Definition: Walrasian Equilibrium Prices

- The price vector $p \ge 0$ is a Walrasian Equilibrium price vector if
- there is no market in excess demand ($\overline{e} \leq 0$),
- and $p_j = 0$ for any market that is in excess supply ($\overline{e}_j < 0$).
- We are now ready to state and prove the "Adam Smith Theorem" (WE → PEA)...

Proposition 5.2-1: First Welfare Theorem

- If preferences of each consumer satisfies LNS, then the Walrasian Equilibrium allocation is Pareto efficient.
- Proof:

Proposition 5.2-3: Second Welfare Theorem

- Let $\{\hat{x}^h\}_{h=1}^H, \{\hat{y}^f\}_{f=1}^F$ be a PEA. Suppose:
- 1. Consumption vectors are private
- 2. Consumption sets X^h are convex
- 3. Utility functions $U^h(\cdot)$ are continuous, quasiconcave, and satisfies LNS
- 4. There is some $\underline{x}^h \in X^h$ such that $\underline{x}^h < \hat{x}^h$
- 5. Production sets γ^f convex and of free disposal
- Then there exist a price vector $p \ge 0$ such that $x^h \succ_h \hat{x}^h \Rightarrow p \cdot x^h > p \cdot \hat{x}^h$ $y^f \in \gamma^f \Rightarrow p \cdot y^f \le p \cdot \hat{y}^f$ 16

Summary of 5.2

- Pareto Efficiency:
 - Cannot make one better off without hurting others
- Walrasian Equilibrium: market clearing prices
- Welfare Theorems:
 - First: Walrasian Equilibrium is Pareto Efficient
 - Second: Pareto Efficient allocations can be supported as Walrasian Equilibria (with transfer)
- Homework: Exercise 5.2-1~3

