Principal-Agent Problem

Joseph Tao-yi Wang 2019/10/23

(Lecture 12, Micro Theory I)

2019/11/1

Why Should We Care About This?

- Principal-Agent Relationships are Everywhere
 - Firm owner vs. manager
 - Insurance company vs. insurer
 - People vs. politician
 - Professor vs. student (or TA!)
 - Policymaker vs. people/firms
 - Planner vs. actor (even in your brain!)
 - Self-control: Your today-self vs. tomorrow-self

The Principal-Agent Problem

- Firm owner (Principal) hires manager (Agent)
- Revenue $y_1 < \cdots < y_S$ in state $s = 1 \sim S$, public
- Cost C(x) for agent action $x \in X = \{x_1, \cdots, x_n\}$ - Action only known to agent
- State s occurs with probability $\pi_s(x)$ given x
- Assume: Likelihood ratio increasing overs s

$$L(s, x, x') = \frac{\pi_s(x')}{\pi_s(x)}, x' > x$$

- Greater output = more likely desirable action

Contracting under Full Information

- Principal's VNM utility function $u(\cdot)$
- Agent's utility is $Ev(\cdot) C(x)$
- Contract: $w(x) = (w_1(x), w_2(x), \dots, w_S(x))$ - (Wage $w_s(x)$ depends on state and action x)
- Expected Utility of each party: $U_A(x,w) = \sum_{s=1}^{S} \pi_s(x)v(w_s(x)) - C(x)$ $U_P(x,w) = \sum_{s=1}^{S} \pi_s(x)u(y_s - w_s(x))$

Contracting under Incomplete Information

• Contract: $w = (w_1, w_2, \cdots, w_S)$

– Wage w_s depends on state, but not hidden action x

- Expected Utility of each party: $U_A(x,w) = \sum_{s=1}^{S} \pi_s(x)v(w_s) - C(x)$ $U_P(x,w) = \sum_{s=1}^{S} \pi_s(x)u(y_s - w_s)$
- Note: Principal's Expected Utility still depends on hidden action *x*, but cannot contract on it!

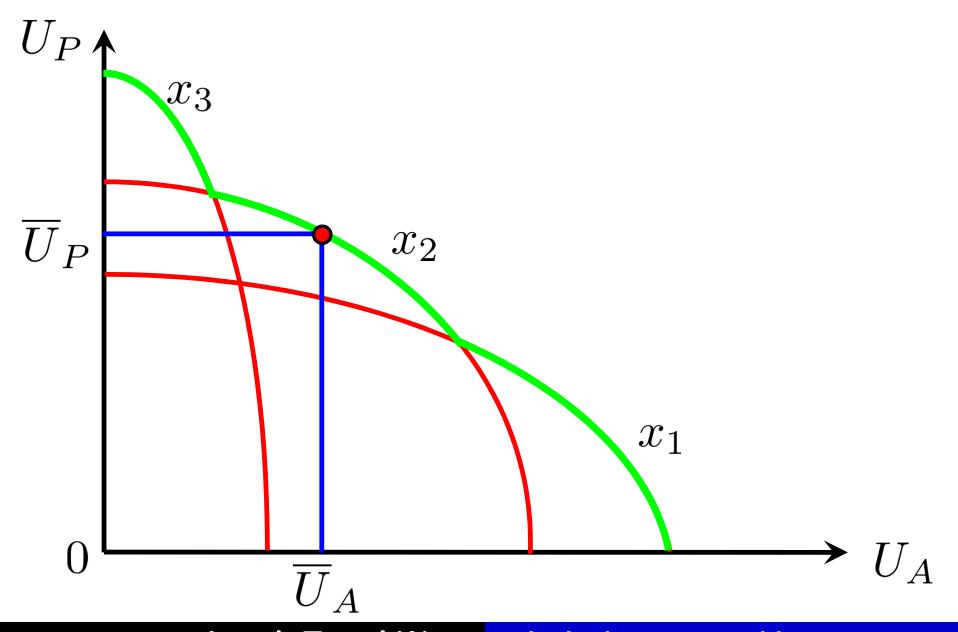
Efficient Contract Under Full Information

• If action is observable, solve Pareto problem:

$$\max_{x,w} \left\{ \sum_{s=1}^{S} \pi_s(x) v(w_s(x)) - C(x) \right|$$
$$x \in X = \{x_1, \cdots, x_n\}, \sum_{s=1}^{S} \pi_s(x) u(y_s - w_s(x)) \ge \overline{U}_P \right\}$$
• 2-step strategy:

- 1. Fix an action x, solve the Pareto problem
- 2. Find the envelope of PEAs under different ${\rm x}$

Efficient Contract Under Full Information



Principal's Optimal Contract: Full Information

• Which efficient contract does Principal like?

 $\max_{x,w} \left\{ \sum_{s=1}^{S} \pi_s(x) u(y_s - w_s(x)) \right|$ $x \in \{x_1, \cdots, x_n\}, \sum_{s=1}^{S} \pi_s(x) v(w_s(x)) - C(x) \ge \overline{U}_A \right\}$ • 2-step strategy:

1. Fix action x, solve the Pareto problem 2. Find the action x^* that maximizes U_P

Risk Neutral Principal vs. Risk Averse Agent

• Principal is risk neutral, solve Pareto problem:

 $\max_{x,w} \left\{ \sum_{s=1}^{S} \pi_s(x) \underbrace{(y_s - w_s(x))}_{S} \right|$ $x \in X, \sum_{s=1}^{S} \pi_s(x) v(w_s(x)) - C(x) \ge \overline{U}_A \right\}$

Claim: Principal bears all risk and w_s(x) = w(x)
 Agent is risk averse, can offer lower, but fixed wage and still make agent not worse off...

Why Fixed Wage Contract? Consider...

S

$$\overline{w}(x) = \sum_{s=1} \pi_s(x) w_s(x) \text{ for } w(x) = (w_1(x), \cdots, w_S(x))$$

- Agent is risk averse, so by Jensen's inequality:
- $v(\overline{w}(x)) C(x) > \sum_{s=1} \pi_s(x)v(w_s(x)) C(x) \ge \overline{U}_A$ - Inequality strict unless $w_1(x) = \dots = w_S(x)$
- Principal can instead offer $w_s(x) = \overline{w}(x) \epsilon$ to bear all risk (and agent still not worse off!)
- Not optimal unless wage is fixed: $w_s(x) = w$

Risk Neutral Principal vs. Risk Averse Agent

• Fix \overline{x} , the Pareto problem becomes:

$$\max_{w} \left\{ \sum_{s=1}^{S} \frac{\pi_{s}(\overline{x})y_{s}}{\sum_{s=1}^{S} \pi_{s}(\overline{x})y_{s}} - w \left| v(w) - C(\overline{x}) \geq \overline{U}_{A} \right\} \right\}$$
$$\mathcal{L} = \sum_{s=1}^{S} \pi_{s}(\overline{x})y_{s} - w + \lambda \left[v(w) - C(\overline{x}) - \overline{U}_{A} \right]$$
FOC:

 $w: -1 + \lambda v'(w) \leq 0$ with equality if w > 0 $\lambda: v(w) - C(\overline{x}) \geq \overline{U}_A$ with equality if $\lambda > 0$

Risk Neutral Principal vs. Risk Averse Agent

 $w: -1 + \lambda v'(w) \le 0$ with equality if w > 0

 $\lambda: v(w) - C(\overline{x}) \geq \overline{U}_A$ with equality if $\lambda > 0$

- Constraint must bind (or can decrease the fixed wage w and increase $U_{\rm P}$), Hence,
- $v(w) = \overline{U}_A + C(\overline{x})$, so optimal wage (for \overline{x}) is $w = v^{-1}(\overline{U}_A + C(\overline{x}))$
- Find $x^* \in X = \{x_1, \cdots, x_n\}$ to: $\max_{x} \left\{ \sum_{s=1}^{S} \pi_s(x) y_s - v^{-1} (\overline{U}_A + C(x)) \right\}$

• Suppose instead: Agent is risk neutral, solve:

 $\max_{x,w} \left\{ \sum_{s=1}^{S} \pi_s(x) u(y_s - w_s(x)) \right|$ $x \in X, \sum_{s=1}^{S} \pi_s(x) (\underline{w_s(x)}) - C(x) \ge \overline{U}_A \right\}$

- Claim: Agent bears all risk and $r_s = r$
 - Principal is risk averse, can offer lower, but fixed rent and still make principal not worse off...

S

$$\overline{r(x)} = \sum_{s=1}^{\infty} \pi_s(x) r_s \text{ for } r(x) = (r_1, \cdots, r_S)$$

$$= (y_1 - w_1(x), \cdots, y_S - w_S(x))$$
• Principal is risk averse, so by Jensen's inequality:

$$u(\overline{r}(x)) > \sum_{s=1}^{\infty} \pi_s(x) u(y_s - w_s(x)) = \sum_{s=1}^{\infty} \pi_s(x) u(r_s)$$
- Inequality strict unless $r_1(x) = \cdots = r_S(x)$

- Principal can keep $r_s(x) = \overline{r}(x)$ and have risk neutral agent bear all risk (and not be worse off!)
- Not optimal unless rent is fixed: $r = y_s w_s(x)$

• Fix \overline{x} , the Pareto problem becomes:

s=1

$$\max_{r} \left\{ u(r) \middle| \sum_{s=1}^{S} \pi_{s}(\overline{x}) (\underline{y_{s} - r}) - C(\overline{x}) \ge \overline{U}_{A} \right\}$$
$$\mathcal{L} = u(r) + \lambda \left[\sum_{s=1}^{S} \pi_{s}(\overline{x}) y_{s} - r - C(\overline{x}) - \overline{U}_{A} \right]$$
$$\bullet \text{ FOC: } r: u'(r) - \lambda \le 0 \text{ with equality if } r > 0$$
$$: \sum_{S} \pi_{s}(\overline{x}) y_{s} - r - C(\overline{x}) \ge \overline{U}_{A} \text{ with equality if } \lambda > 0$$

- $r: u'(r) \lambda \leq 0$ with equality if r > 0
- $\lambda : \sum_{s=1} \pi_s(\overline{x}) y_s C(\overline{x}) \ge \overline{U}_A + r \text{ with equality if } \lambda > 0$
 - Constraint must bind (or can increase fixed rent r to raise U_P), so optimal rent (for \overline{x}) is $_S$

 \mathcal{O}

$$r = \sum_{s=1} \pi_s(\overline{x}) y_s - C(\overline{x}) - \overline{U}_A$$

• Find *x* to:

S

$$\max_{x \in \{x_1, \cdots, x_n\}} \left\{ \sum_{s=1}^{S} \pi_s(x) y_s - C(x) \right\} - \overline{U}_A$$

Contracting under Incomplete Information

- Now consider Contract: $w = (w_1, w_2, \cdots, w_S)$
- EU: $U_A(x,w) = \sum_{s=1}^{S} \pi_s(x)v(w_s) - C(x)$ $U_P(x,w) = \sum_{s=1}^{S} \pi_s(x)u(y_s - w_s)$
 - Principal's EU still depends on hidden action x, but cannot contract on it! Can only induce x by:
- Incentive Compatibility (IC) Constraint: Under w, $U_A(x,w) \le U_A(x^*,w)$ for all $x \in X$

• For hidden action, solve Pareto problem:

$$\max_{x,w} \left\{ \sum_{s=1}^{S} \pi_s(x) u(y_s - w_s) \middle| \begin{array}{l} U_A(\tilde{x}, w) \leq U_A(x, w), \\ \text{(IC constraint added)} \end{array} \right. \\ \forall \tilde{x}, \sum_{s=1}^{S} \pi_s(x) v(w_s) - C(x) \geq \overline{U}_A \right\}$$

- Not easy in general, except the case of...
- Risk Averse Principal vs. Risk Neutral Agent!!

Why is RA-Principal vs. RN-Agent Special?

• Optimal rent:

• and \overline{x} solves r

• So, under r,

IC holds!

Can't do better than Full Info.

$$r = \sum_{s=1}^{S} \pi_s(\overline{x}) y_s - C(\overline{x}) - \overline{U}_A$$
$$\max_{x \in X} \left\{ \sum_{s=1}^{S} \pi_s(x) y_s - C(x) \right\} - \overline{U}_A$$
$$\sum_{s=1}^{S} \pi_s(x) y_s - r - C(x) = U_A(x, w)$$
$$\leq \sum_{s=1}^{S} \pi_s(\overline{x}) y_s - r - C(\overline{x}) = U_A(\overline{x}, w)$$

• What if we are in the tough case solving...

$$\max_{x,w} \left\{ \sum_{s=1}^{S} \pi_s(x) \mathbf{v}(y_s - w_s) \middle| U_A(\tilde{x}, w) \le U_A(x, w), \\ \forall \tilde{x}, \sum_{s=1}^{S} \pi_s(x) v(w_s) - C(x) \ge \overline{U}_A \right\}$$

- EX: Risk Averse Agent vs. Risk Neutral Principal 1. Fix action x, solve the Pareto problem 2. Find the action x^* that maximizes U_P

• If only one IC binds

- Lowest-cost action binds or only 2 actions (S = 2) $\max_{w} \left\{ U_P(\overline{x}, w) | U_A(\underline{\tilde{x}}, w) \le U_A(\overline{x}, w), U_A(\overline{x}, w) \ge \overline{U}_A \right\}$ $\mathcal{L} = U_P(\overline{x}) + \lambda \left[U_A(\overline{x}, w) - \overline{U}_A \right] + \mu \left[U_A(\overline{x}, w) - U_A(\widetilde{x}, w) \right]$ $\mathcal{L} = \sum_{s=1}^{S} \pi_s(\overline{x}) u(y_s - w_s) + \lambda \left[\sum_{s=1}^{S} \pi_s(\overline{x}) v(w_s) - C(\overline{x}) - \overline{U}_A \right]$ $+\mu \left[\sum_{s=1}^{S} \pi_s(\overline{x}) v(w_s) - C(\overline{x}) - \left(\sum_{s=1}^{S} \pi_s(\tilde{x}) v(w_s) - C(\tilde{x}) \right) \right]$

$$\mathcal{L} = \sum_{s=1}^{S} \pi_{s}(\overline{x})u(y_{s} - w_{s}) + (\lambda + \mu) \left[\sum_{s=1}^{S} \pi_{s}(\overline{x})v(w_{s}) - C(\overline{x}) \right]$$
$$+ \mu \left[\sum_{s=1}^{S} \pi_{s}(\overline{x})v(w_{s}) - \lambda \overline{U}_{A} - \mu \left[\sum_{s=1}^{S} \pi_{s}(\tilde{x})v(w_{s}) - C(\tilde{x}) \right] \right]$$
$$w_{s} :- \pi_{s}(\overline{x})u'(y_{s} - w_{s}) + (\lambda + \mu)\pi_{s}(\overline{x})v'(w_{s})$$
$$- \mu \pi_{s}(\tilde{x})v'(w_{s}) \leq 0 \text{ (w/ equality if } w_{s} > 0)$$
$$\lambda : \sum_{s=1}^{S} \pi_{s}(\overline{x})v(w_{s}) - C(\overline{x}) \geq \overline{U}_{A} \text{ (w/ equality if } \lambda > 0)$$
$$\mu : (w/ equality if \mu > 0) \geq \sum_{s=1}^{S} \pi_{s}(\tilde{x})v(w_{s}) - C(\tilde{x})$$

Risk Neutral Principal vs. Risk Averse Agent

$$w_s :- \pi_s(\overline{x})u'(y_s - w_s) + (\lambda + \mu)\pi_s(\overline{x})v'(w_s) - \mu\pi_s(\widetilde{x})v'(w_s) \le 0 \text{ (w/ equality if } w_s > 0)$$

• If
$$w_s > 0$$
, $\frac{u'(y_s - w_s)}{v'(w_s)} = (\lambda + \mu) - \mu \frac{\pi_s(\tilde{x})}{\pi_s(\overline{x})}, \tilde{x} < \overline{x}$

- Risk Neutral Principal vs. Risk Averse Agent:

• FOC:

$$u'(y_s - w_s) = 1, v(w_s) \text{ concave}$$

$$\frac{1}{v'(w_s)} = (\lambda + \mu) - \mu \frac{\pi_s(\tilde{x})}{\pi_s(\bar{x})}$$
Increasing in s ?

Risk Neutral Principal vs. Risk Averse Agent

• FOC:
$$\frac{1}{v'(w_s)} = (\lambda + \mu) - \mu \frac{\pi_s(\tilde{x})}{\pi_s(\overline{x})}, \tilde{x} < \overline{x}$$

- Monotone Likelihood Ratio Property required so w_s^* is increasing in $s: \frac{\pi_s(\overline{x})}{\pi_s(\tilde{x})} > 0$, for $\overline{x} > \tilde{x}$
- IR/IC Constraints Bind: $\lambda : U_A(\overline{x}, w) = \sum \pi_s(\overline{x})v(w_s) - C(\overline{x}) = \overline{U}_A$ $\mu : \sum \pi_s(\overline{x})v(w_s) - C(\overline{x}) = \sum \pi_s(\tilde{x})v(w_s) - C(\tilde{x})$ $U_A(\overline{x}, w) = U_A(\tilde{x}, w)$

Summary of 7.4

- Principal-Agent Problem is an entire field!
 - Each problem is a research paper
- Complete Information Simple Cases:
- P is Risk Neutral (A is Risk Averse)
 - Find Fixed Wage Contract for each possible action
 - Find Optimal Action to $Max U_P$
- A is Risk Neutral (P is Risk Averse)
 - Find Fixed Rent Contract for each possible action
 - Find Optimal Action to $Max U_A$

Summary of 7.4

- Hidden Action Simple Cases:
- A is Risk Neutral (P is Risk Averse)
 - Use same Fixed Rent Contract w/o hidden action
 - (as in second case of complete information) since
 - It already satisfies IC (possible solution!), and
 - We cannot do better than the solution of the same problem with less constraints
- Homework: 2014 Final C, 2013 Final B7-B13