Theory of Risky Choice

Joseph Tao-yi Wang
2019/10/9

(Lecture 10, Micro Theory I)

Theory of Risky Choice

- We analyzed preferences, utility and choices
- Apply them to study risk and uncertainty
- Preference for probabilities
- Expected Utility
- Discuss Experimental Anomalies

1. Allais paradox and Ellsberg paradox
2. Bayes' Rule paradoxes: Soft vs. Hard prob., Game show paradox (Monty Hall problem)
3. Rabin paradox

States and Probabilities

- Consequence x_{s} happens in state $s=1, \cdots, S$
- Assign (subjective) probability π_{s} to state s
- A prospect $\left.(\vec{\pi} ; \vec{x})=\left(\left(\pi_{1}, \cdots, \pi_{S}\right) ;\left(x_{1}, \cdots, x_{S}\right)\right)\right)$
- People have preferences for these prospects
- Under the Axioms of Consumer Choice, exists continuous $\widehat{U(\vec{\pi} ; \vec{x})}$ representing these pref.
- If we fix consequences; focus on probabilities

$$
U(\vec{\pi} ; \vec{x})=U(\vec{\pi})=U\left(\pi_{1}, \pi_{2}, \pi_{3}\right)
$$

States and Probabilities

- Assume $x_{3} \succ x_{2} \succ x_{1}$, can show all possible probabilities on 2D: $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$

Compound Prospect (Compound Lottery)

- If I offer you $\vec{\pi}^{1}=\left(\pi_{1}^{1}, \pi_{2}^{1}, \pi_{3}^{1}\right)$ with prob. p_{1}, and $\vec{\pi}^{2}=\left(\pi_{1}^{2}, \pi_{2}^{2}, \pi_{3}^{2}\right)$ with probability $p_{2}=1-p_{1}$

Are Indifference Curves Linear?

- If you are indifferent between $\vec{\pi}^{1}$ and $\vec{\pi}^{2}$
- How would you feel about randomizing them?

When Are Indifference Curves Parallel?

- Consider a third prospect \vec{r}

(if preferences are independent of irrelevant alternatives) Parallel Indifference Curves!

Independence Axiom(s)

- (IA) If $\vec{\pi}^{1} \succsim \vec{\pi}^{2}$, then for any prospect \vec{r} and probabilities $p_{1}, p_{2}>0, p_{1}+p_{2}=1$

$$
\vec{q}^{1}=\left(p_{1}, p_{2}: \vec{\pi}^{1}, \vec{r}\right) \succsim\left(p_{1}, p_{2}: \vec{\pi}^{2}, \vec{r}\right)=\vec{q}^{2}
$$

- (IA') If $\vec{\pi}^{m} \succsim \vec{\mu}^{m}, m=1, \cdots, M$, then for any probability vector $p=\left(p_{1}, \cdots, p_{M}\right)$
$\left(p_{1}, \cdots, p_{M}: \vec{\pi}^{1}, \cdots, \vec{\pi}^{M}\right)$

$$
\succsim\left(p_{1}, \cdots, p_{M}: \vec{\mu}^{1}, \cdots, \vec{\mu}^{M}\right)
$$

Expected Utility

- For any prospect $\vec{\pi}$, consider (on $\pi_{1}+\pi_{3}=1$): $\dot{\pi}_{3}$ Extreme lottery $(1-v(\vec{\pi}), 0, v(\vec{\pi})) \sim \vec{\pi}$ ${ }_{x_{3}}^{\pi_{3}} \uparrow v\left(x_{3}\right)=1 \quad$ Can use $v(\vec{\pi})$ to represent pref.!!

Expected Utility

- In general, for any prospect $\vec{p}=\left(p_{1}, \cdots, p_{S}\right)$
- The consumer is indifferent between \vec{p} and playing the extreme lottery

$$
\sum_{s=1}^{S} p_{s} v\left(x_{s}\right) 0, \cdots, 0,1-\sum_{s=1}^{S} p_{s} v\left(x_{s}\right)
$$

- Hence, we can represent her preferences with the above expected win probabilities
- Expected Utility!!

Expected Utility Rule

- Assume (IA'), then
- Preferences over prospects

$$
(\vec{p} ; \vec{x})=\left(p_{1}, \cdots, p_{S} ; x_{1}, \cdots, x_{S}\right)
$$

- Can be represented by the Von NeumannMorgenstern utility function

$$
u(\vec{p}, \vec{x})=\sum_{s=1}^{S} p_{s} v\left(x_{s}\right)
$$

- Proof:

Expected Utility Rule

- Proof: S consequences, best is x^{*}, worse is x_{*}
- Can assign probability for extreme lotteries:

$$
\vec{e}^{s} \equiv\left(v\left(x_{s}\right), 1-v\left(x_{s}\right): x^{*}, x_{*}\right) \sim x_{s}
$$

- (IA') implies $(\vec{p} ; \vec{x}) \sim\left(p_{1}, \cdots, p_{S}: \vec{e}^{1}, \cdots, \vec{e}^{S}\right)$

$$
\sim\left(u(\vec{p}, \vec{x}), 1-u(\vec{p}, \vec{x}): x^{*}, x_{*}\right)
$$

$$
\text { where } u(\vec{p}, \vec{x})=\sum_{s=1}^{S} p_{s} v\left(x_{s}\right)
$$

- (by reducing compound prospects)

Experimental Anomalies

- Allais Paradox
- Ellsberg Paradox
- Bayes' Rule Paradoxes
- Soft vs. Hard Probabilities
- Game Show Paradox
- Rabin Paradox

Allais Paradox

- Consider four prospects:
A. $\$ 1$ million for sure
B. 90% chance $\$ 5$ million (\& 10% chance zero)
- Among A and B, you choose...
C. 10% chance $\$ 1$ million ($\& 90 \%$ chance zero)
D. 9% chance $\$ 5$ million (\& 91% chance zero)
- Among C and D, you choose...
- Is this consistent with Expected Utility???

Allais Paradox * 1,000

A. $\$ 1$ billion for sure
B. 90% chance $\$ 5$ billion (\& 10% chance zero) - Among A and B, you choose...
C. 10% chance $\$ 1$ billion ($\& 90 \%$ chance zero)
D. 9% chance $\$ 5$ billion (\& 91% chance zero)

- Among C and D, you choose...
- Are your answers (still) consistent with Expected Utility? Why or why not?

Ellsberg Paradox

- One urn: 30 Black balls, and 60 "other balls" - Other balls could be either Red or Green

1. One ball is drawn. You win $\$ 100$ if the ball is (a) Black or (b) Green. You pick...?
2. Now you win $\$ 50$ if the ball is "either Red or another color you choose." Would you choose (a) Black or (b) Green?

- What did you choose? Did it violate EU?

Ellsberg Paradox

1. One ball is drawn. You win $\$ 100$ if the ball is (a) Black or (b) Green.

- Picking Black $=$ Believe <30 Green balls

2. Now you win if "either Red or another color." You choose (a) Black or (b) Green?

- Picking Green $=$ Believe >30 Green balls
- Since it is the same urn, this is inconsistent!
- Can this be due to hedging (risk aversion)?
- Maybe, but can fix this by paying only 1 round...

Bayes' Rule Paradoxes: Soft vs. Hard Prob.

- Two urns, each contain 100 balls.

1. Urn 1 has 60 Yellow balls.
2. Urn 2 has 75 or 25 Yellow balls with equal chance.

- You win a prize if you draw a Yellow ball.
- A ball is drawn from Urn 2 and it is Yellow.
- Which Urn should you choose?
- Did you do Bayesian updating correctly?

Bayes' Rule Paradoxes: Soft vs. Hard Prob.

- Prior to draw, $\operatorname{Pr}($ draw a $Y)=0.5$. After:
- $\operatorname{Pr}(\mathrm{Y} \mid 75-\mathrm{Y})=0.75, \operatorname{Pr}(\mathrm{Y} \mid 25-\mathrm{Y})=0.25$
- $\operatorname{Pr}(75-\mathrm{Y} \mid \mathrm{Y})=0.5 \times 0.75 / 0.5=0.75$
- $\operatorname{Pr}(25-\mathrm{Y} \mid \mathrm{Y})=1-0.75=0.25$
- $\operatorname{Pr}($ draw another $\mathrm{Y} \mid \mathrm{Y})=$

$$
\begin{aligned}
& \operatorname{Pr}(75-\mathrm{Y} \mid \mathrm{Y}) \times \operatorname{Pr}(\mathrm{Y} \mid 75-\mathrm{Y})+ \\
& \operatorname{Pr}(25-\mathrm{Y} \mid \mathrm{Y}) \times \operatorname{Pr}(\mathrm{Y} \mid 25-\mathrm{Y}) \\
= & 0.75 \times 0.75+0.25 \times 0.25=0.625>0.6
\end{aligned}
$$

- So you should pick Urn 2!! (Did you do that?)

Bayes' Pule Paradoxes: Game Show Paradox

3

One door hides the prize (a car). Remaining two doors hides a goat (non-prize). Suppose you choose door number 1 ...

Game Skw Paradox (Monty Hall Problem)

Door 3 is opened for you...
Obviously the car is not behind door 3... Would you want to switch to door 2?

Depends on how door is opened...

- Rule to open one door:

The Host must open one "other" door without the prize. If he has a choice between more than one door, he will randomly open one of the possible (goat) doors.

- The Game Show Paradox is also known as the Monty Hall Problem, named after the name of the TV show host "Monty Hall"

If You Pisked the Right Door (33.3\%)

Host randomizes between door 2 and 3
If host opens door 3... (Prob=33.3\%*50\%)
You should not switch (but you don't know)

If You Pifked the Wrong Door (66.7\%)

Host cannot open door 2 (contains car)
See host opening door 3... (Prob.=66.70\%*100\%)
You should switch (but you don't know)

Bayesian Updating in the Monty Hall Problem

- $\operatorname{Pr}($ host opens Door $3 \&$ car in Door 1)

$$
=33.3 \% * 50 \%=16.7 \%
$$

- $\operatorname{Pr}($ host opens Door $3 \&$ car in Door 2)

$$
=33.3 \% * 100 \%=33.3 \%
$$

- $\operatorname{Pr}($ host opens Door $3 \&$ car in Door 3) $=0$ - Host never opens Door 3!
- Pr (car in Door $1 \mid$ Host opens Door 3)

$$
=[16.7 \%] /[16.7 \%+33.3 \%+0 \%]=1 / 3
$$

Game Staw Paradox Plus: Modified Monty Hall

One door hides the prize (a car). Remaining two doors hides a goat (non-prize). Door 3 is transparent (and you see the goat) Suppose you choose door number 1 ...

Game Shaw Paradox Plus: Modified Monty Hall

Door 3 is opened for you...
Obviously the car is not behind door 3 (and you knew that already)...
Would you want to switch to door 2?

If You Pigked the Right Door (50\%)

Host randomizes between door 2 and 3 (50-50)
If host opens door 2... (Prob.=50\%*50\%)
You should definitely not switch!

If You Pi-ked the Right Door (50\%)

Host randomizes between door 2 and 3 If host opens door $3 \ldots$ ($\operatorname{Prob}=50 \% * 50 \%$)
You should still not switch (but you don't know)

If You Pigked the Wrong Door (50\%)

Host cannot open door 2 (contains car)
See host opening door 3... (Prob.=50\%*100\%)
You should switch (but you don't know)

Bayesian Solution (Monty Hall Plus)

Door \#3 is transparent...

$$
P(\text { Winning if you choose to switch })=\frac{\frac{1}{2} \times 1}{\frac{1}{2} \times 1+\frac{1}{2} \times \frac{1}{2}}
$$

Rabin Paradox: Which Cells Will You Accept?

Payoff if Green Ball	Number of Green Balls (out of $\mathbf{1 0 0}$)				Payoff if Red Ball	
100	52	55	60	66	70	-100
1000	13	20	33	46	57	-100
5000	7	18	33	46	57	-100
25000	7	18	33	46	57	-100

Rabin Paradox

- Suppose your risk preference follows EU.
- For initial Wealth is ω
- Consider the prospect $(p, 1-p: \omega+g, \omega-g)$
- If you reject this lottery, this implies:

$$
v(\omega) \geq(1-p) \cdot v(\omega-g)+p \cdot v(\omega+g)
$$

- Or,

$$
[v(\omega+g)-v(\omega)] \leq \frac{1-p}{p} \cdot[v(\omega)-v(\omega-g)]
$$

Rabin Paradox

- Now consider initial wealth $\omega^{\prime}=\omega+g$
- If you reject the prospect $\left(p, 1-p: \omega^{\prime}+g, \omega^{\prime}-g\right)$
- Then: $v\left(\omega^{\prime}\right) \geq(1-p) \cdot v\left(\omega^{\prime}-g\right)+p \cdot v\left(\omega^{\prime}+g\right)$
- Or,

$$
\begin{aligned}
& {[v(\omega+2 g)-v(\omega+g)]=\left[v\left(\omega^{\prime}+g\right)-v\left(\omega^{\prime}\right)\right]} \\
& \quad \leq \frac{1-p}{p} \cdot\left[v\left(\omega^{\prime}\right)-v\left(\omega^{\prime}-g\right)\right] \\
& \quad=\frac{1-p}{p} \cdot[v(\omega+g)-v(\omega)]
\end{aligned}
$$

Rabin Paradox

- Combining the two inequalities:

$$
[v(\omega+2 g)-v(\omega+g)]
$$

$$
\leq \frac{1-p}{p} \cdot[v(\omega+g)-v(\omega)]
$$

$$
\leq\left(\frac{1-p}{p}\right)^{2} \cdot[v(\omega)-v(\omega-g)] \ldots(2)
$$

- Only required one to reject the fair gamble at both wealth levels ω and $\omega^{\prime}=\omega+g$

Rabin Paradox

- Suppose you reject the fair gamble at all wealth levels between ω and $\omega^{(n)}=\omega+n g$
- Then,

$$
\begin{aligned}
& {[v(\omega+n g)-v(\omega+(n-1) g)]} \\
& \leq \frac{1-p}{p} \cdot[v(\omega+(n-1) g)-v(\omega+(n-2) g)] \\
& \leq \cdots \leq\left(\frac{1-p}{p}\right)^{n} \cdot[v(\omega)-v(\omega-g)] \cdots \cdots .(\mathrm{n})
\end{aligned}
$$

Rabin Paradox

- Summing (1) through (n):

$$
\begin{gathered}
{[v(\omega+q)-v(\omega)]+[v(\omega+2 g)-v(\omega)]} \\
\quad \mathbf{N} \cdot N+[v(\omega+n g)-v(\omega+1) g)] \\
=[v(\omega+n g)-v(\omega)] \\
\leq\left[\frac{1-p}{p}+\cdots+\left(\frac{1-p}{p}\right)^{n}\right] \cdot[v(\omega)-v(\omega-g)]= \\
\frac{1-p}{p} \cdot[v(\omega)-v(\omega-g)]+\left(\frac{1-p}{p}\right)^{2} \cdot[v(\omega)-v(\omega-g)] \\
\quad+\cdots+\left(\frac{1-p}{p}\right)^{n} \cdot[v(\omega)-v(\omega-g)]
\end{gathered}
$$

Rabin Paradox

Let $s(n, p)=1+\frac{1-p}{p}+\cdots+\left(\frac{1-p}{p}\right)^{n}$

$$
[v(\omega+n g)-v(\omega)]
$$

$$
\leq[\underline{\underline{v(\omega)}}-\overline{v(\omega}-g)] \cdot\left[\frac{1-p}{p}+\cdots+\left(\frac{1-p}{p}\right)^{n}\right]
$$

$\Rightarrow[v(\omega+n g)+(s(n, p)-1) v(\omega-g)] \leq s(n, p) \cdot \underline{\underline{v(\omega)}}$

- $\operatorname{Or}, v(\omega) \geq \frac{1}{s(n, p)} v(\omega+n g)+\left(1-\frac{1}{s(n, p)}\right) v(\omega-g)$
- This means rejecting

$$
\left(\frac{1}{s(n, p)}, 1-\frac{1}{s(n, p)}: \omega+n g, \omega-g\right)
$$

Rabin Paradox

- We have shown that:
- If you reject prospect $(p, 1-p: \omega+g, \omega-g)$
- For all wealth levels $[\omega, \omega+n g]$
\rightarrow You would also reject the more favorable prospect $\left(\frac{1}{s(n, p)}, 1-\frac{1}{s(n, p)}: \omega+n g, \omega-g\right)$ $s(n, p)=1+\frac{1-p}{p}+\cdots+\left(\frac{1-p}{p}\right)^{n} \rightarrow \frac{1}{1-\frac{1-p}{p}}$
- This is true for any large n !

$$
\frac{1}{s(n, p)} \rightarrow \frac{2 p-1}{p}
$$

Rabin Paradox：Which Cells Will You Accept？

Payoff if Green Ball	Number of Green Balls （out of 100）					Payoff if Red Ball
100	S\％	㚈	\＄0	66	70	－100
1000	效	20	泼	46	57	－100
5000	X	没	$3{ }^{3}$	46	57	－100
25000	X	没	3／3	46	57	－100

Continuous Probability Distribution

- Let state $s \in \mathcal{S}=[\alpha, \beta]$
- CDF is $F(t)=\operatorname{Pr}\{s \leq t\} \quad F(\alpha)=0, F(\beta)=1$
- Probability of being in $C=\left[s, s^{\prime}\right]$ is:
- Probability Measure $\pi(C)=F\left(s^{\prime}\right)-F(s)$
- Can generalize and assign probability measures over closed convex hypercube $C \in \mathbb{R}^{n}$

Support of the Continuous Distribution

- x is in the support of the distribution if for every neighborhood $N(x, \delta)$ of $\mathrm{x}, \pi(N(x, \delta))>0$
- Example: $\mathcal{S}=[0,3]$

$$
F(\theta)= \begin{cases}\frac{1}{2} \theta, & 0 \leq \theta \leq 1 \\ \frac{1}{2}, & 1<\theta<2 \\ \frac{1}{2}(\theta-1), & 2 \leq \theta \leq 3\end{cases}
$$

- What is the support?

$$
[0,1] \cup[2,3]
$$

Summary of 7.1

- Preferences over prospects
- Indifference Curves
- Linear: "Reduction of Compound Lotteries"
- Parallel: "Independent of Irrelevant Alternatives"
- Expected Utility
- Anomalies: Allais paradox, Ellsberg paradox, Bayes' Rule paradoxes (Soft vs. Hard prob. and Monty Hall Problem) and Rabin paradox
- Continuous State Space
- Homework: Exercise 7.1-4 (Optional: 7.1-3)

In-Class Homework: Exercise 7.1-1 IA $\Leftrightarrow I^{\prime}$

a) For $M=2$, show that $I A$ implies $I A^{\prime}$ - (IA) If $\pi^{1} \succsim \pi^{2}$, then for any prospect r and probabilities $p_{1}, p_{2}>0, p_{1}+p_{2}=1$ $q^{1}=\left(p_{1}, p_{2}: \pi^{1}, r\right) \succsim\left(p_{1}, p_{2}: \pi^{2}, r\right)=q^{2}$

- (IA') If $\pi^{m} \succsim \hat{\pi}^{m}, m=1, \cdots, M$, then for any probability vector $p=\left(p_{1}, \cdots, p_{M}\right)$

$$
\left(p: \pi^{1}, \cdots, \pi^{M}\right) \succsim\left(p: \hat{\pi}^{1}, \cdots, \hat{\pi}^{M}\right)
$$

b) Show that if the proposition holds for $\mathrm{M}=$ $k-1$, then it must also hold for $M=k$.

In-Class Homework: Exercise 7.1-2 Allais

A. $\$ 1$ million for sure $-(0,1,0)$ B. 90% chance $\$ 5$ million - $(0.90,0,0.10)$ C. 10% chance $\$ 1$ million - ($0,0.10,0.90)$
D. 9% chance $\$ 5$ million $-(0.09,0,0.91)$

1. Draw tree diagrams showing that C and D can be represented as compound gambles between A and B, respectively, and $(0,0,1)$, where the probability of $(0,0,1)$ is the same.
2. Show that the ranking of A and B should be the same as the ranking of C and D.
