General Equilibrium for the Exchange Economy

Joseph Tao-yi Wang 2019/10/2 (Lecture 9, Micro Theory I)

Joseph Tao-yi Wang General Equilibrium for Exchange

What's in between the lines?

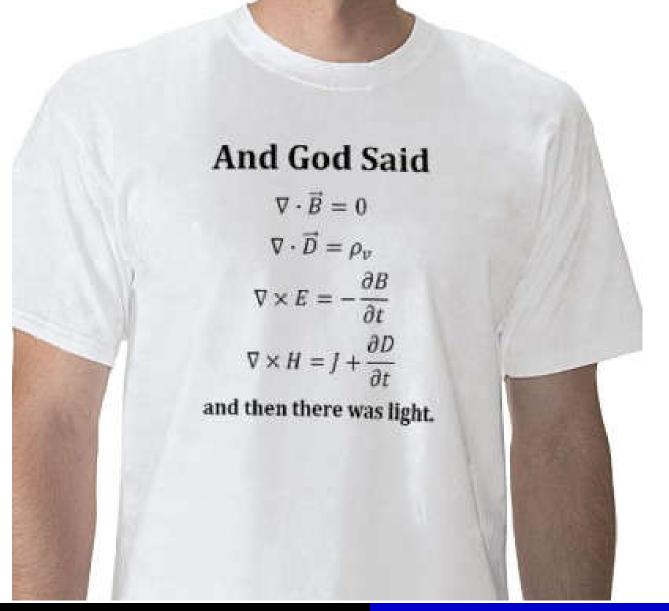
• And God said,

10/9/2019

- Let there be light...

• and there was light.... (Genesis 1:3, KJV)

What's in between the lines?



10/9/2019

and God said,

What's in

$$\begin{split} & \mathsf{E} = \mathsf{h} \mathsf{f} = \mathsf{h} \mathsf{c} / \lambda, \ \mathsf{eV}_0 = \mathsf{h} \mathsf{f} \cdot \mathsf{W}, \ \mathsf{E} = \mathsf{m} \mathsf{c}^2, \ \mathsf{E}^{2} \mathsf{e}^{2} \mathsf{c}^2 + \mathsf{m}^2 \mathsf{c}^4, \ \mathsf{W}(x, t) = \int_{-\infty}^{\infty} \mathcal{A}(k) \mathcal{C}^{(k,r+n)} dk, \\ & \mathsf{p} = \mathsf{h} / \lambda, \ \mathsf{W}(x, t) = \mathcal{C}^{(k,r+n)} \int_{-\infty}^{\infty} \mathcal{A}(k) \mathcal{C}^{(k-k)(r-(\delta n-\delta)_k,\delta t)}, \ \mathsf{V} = \left(\frac{dw}{dk}\right)_{s, t}, \ \mathsf{E} = \mathsf{p}^{2} / 2\mathfrak{m}, \\ & \mathsf{W}(x, t) = \mathcal{C}^{(k,r+n)} \int_{-\infty}^{\infty} \mathcal{A}(k) \mathcal{C}^{(k-k)(r-(\delta n-\delta)_k,\delta t)}, \ \mathsf{V} = \left(\frac{dw}{dk}\right)_{s, t}, \ \mathsf{h} \otimes \mathcal{C}^{(k,r+n)} = \frac{\hbar^2 k^2}{2m} \mathcal{C}^{(k,r+n)} \\ & \mathsf{E} = \hbar^2 k^2 / 2\mathfrak{m}, \quad \mathsf{E} = \hbar \infty = \hbar^2 k^2 / 2\mathfrak{m}, \ \mathfrak{m}_{q, t} = \frac{\mathfrak{m}}{\sqrt{1 - t^2/c^2}}, \quad \frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} = \hbar \frac{\partial \Psi}{\partial t} \\ & \frac{\partial^2 \Psi}{\partial x^2} + \frac{2\mathfrak{m}(\mathcal{E} - V)}{\hbar^2} \Psi = 0, \quad k^2 = \frac{2\mathfrak{m}(\mathcal{E} - V)}{\hbar^2}, \quad \lambda = \frac{\hbar}{\sqrt{2\mathfrak{m}(\mathcal{E} - \mathcal{M})}}, \ \mathcal{E} = \frac{1}{2} k x^2 \\ & \mathsf{E} \psi = -\frac{\hbar}{2\mathfrak{m}} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}\right) - \frac{2\mathcal{E}^2}{4\pi\varepsilon_f} \psi, \quad J = \nabla \times \mathcal{H}, \quad \frac{\mathcal{C}^2 X}{df} + \frac{k}{X} \times = 0 \\ & J = \frac{1}{r \sin \theta} \left[\frac{\partial \mathcal{H}_{f} \sin \theta}{\partial \theta} - \frac{\partial \mathcal{H}_{g}}{\partial \phi}\right] \vec{a}r + \frac{1}{r} \left[\frac{1}{\sin \theta} - \frac{\partial \mathcal{H}_{f}}{\partial \phi} - \frac{\partial}{\partial r}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H}_{f})}{\partial r} - \frac{\partial^2 \mathcal{H}_{f}}{\partial \phi}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H}_{f})}{\partial r} - \frac{\partial^2 \mathcal{H}_{f}}{\partial \phi \phi}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H}_{f})}{\partial r} - \frac{\partial^2 \mathcal{H}_{f}}{\partial \phi \phi}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H}_{f})}{\partial r} - \frac{\partial^2 \mathcal{H}_{f}}{\partial \phi \phi}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H}_{f})}{\partial r} - \frac{\partial(\mathcal{H}_{f})}{\partial \phi \phi}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H}_{f})}{\partial r} - \frac{\partial(\mathcal{H}_{f})}{\partial \phi \phi}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H}_{f})}{\partial r} - \frac{\partial(\mathcal{H}_{f})}{\partial \phi \phi}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H}_{f})}{\partial r} - \frac{\partial(\mathcal{H}_{f})}{\partial \phi \phi}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H}_{f})}{\partial r} - \frac{\partial(\mathcal{H}_{f})}{\partial \phi \phi}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H})}{\partial r} + \frac{\partial(\mathcal{H})}{\partial \phi}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H})}{\partial r} - \frac{\partial(\mathcal{H})}{\partial \phi}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H})}{\partial r} + \frac{\partial(\mathcal{H})}{\partial \phi}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H})}{\partial r} + \frac{\partial(\mathcal{H})}{\partial \sigma}\right] \vec{a}s + \frac{1}{r} \left[\frac{\partial(\mathcal{H})}{\partial \sigma}\right] \vec{a}s + \frac{1}{r}$$

10/9/2019

and there was light.

Exchange

What We Learned from the 2x2 Economy?

• Pareto Efficient Allocation (PEA)

- Cannot make one better off without hurting others

- Walrasian Equilibrium (WE)
 - When Supply Meets Demand
 - Focus on Exchange Economy First
- 1st Welfare Theorem: WE is Efficient
- 2nd Welfare Theorem: Any PEA can be supported as a WE
- These also apply to the general case as well!

10/9/2019

General Exchange Economy

- *n* Commodities: 1, 2, ..., *n*
- *H* Consumers: $h = 1, 2, \cdots, H$
 - Consumption Set: $X^h \subset \mathbb{R}^n_+$
 - Endowment: $\vec{\omega}^h = (\omega_1^h, \cdots, \omega_n^h) \in X^h$
 - Consumption Vector: $\vec{x}^h = (x_1^h, \cdots, x_n^h) \in X^h$
 - Utility Function: $U^h(\vec{x}^h) = U^h(x_1^h, \cdots, x_n^h)$
 - Aggregate Consumption and Endowment:

$$\vec{x} = \sum_{h=1}^{H} \vec{x}^h$$
 and $\vec{\omega} = \sum_{h=1}^{H} \vec{\omega}^h$

• Edgeworth Cube (Hyperbox)

Feasible Allocation

10/9/2019

- A allocation is feasible if
- The sum of all consumers' demand doesn't exceed aggregate endowment: $\vec{x} \vec{\omega} \leq \vec{0}$
- A feasible allocation $\vec{\mathrm{x}}$ is Pareto efficient if
- there is no other feasible allocation \vec{x} that is
- strictly preferred by at least one: $U^i(\vec{x}^i) > U^i(\vec{x}^i)$
- and is weakly preferred by all: $U^h(\vec{x}^h) \ge U^h(\vec{x}^h)$

Walrasian Equilibrium

- Price-taking: Price vector $\vec{p} \ge \vec{0}$
- Consumers: h=1, 2, ..., H
- Endowment: $\vec{\omega}^h = (\omega_1^h, \cdots, \omega_n^h)$ $\vec{\omega} = \sum \vec{\omega}^h$
- Wealth: $W^h = \vec{p} \cdot \vec{\omega}^h$
- Budget Set: $\{\vec{x}^h \in X^h | \vec{p} \cdot \vec{x}^h \leq W^h\}$
- Consumption Set: $\vec{\mathbf{x}}^h = (\mathbf{x}_1^h, \cdots, \mathbf{x}_n^h) \in X^h$
- Most Preferred Consumption: U^h(xth) ≥ U^h(xth) for all xth such that p · xth ≤ W^h
 Vector of Excess Demand: e = x - ω

Joseph Tao-yi Wang General Equilibrium for Exchange

 $h_{\rm c}$

Definition: Walrasian Equilibrium Prices

- The price vector $\vec{p} \ge \vec{0}$ is a Walrasian Equilibrium price vector if
- there is no market in excess demand $(\vec{e} \leq \vec{0})$,
- and $p_j = 0$ for any market that is in excess supply $(e_j < 0)$.
- We are now ready to state and prove the "Adam Smith Theorem" (WE \Rightarrow PEA)...

10/9/2019

Proposition 3.2-0: First Welfare Theorem

 If preferences of each consumer satisfies LNS, then the Walrasian Equilibrium allocation is Pareto efficient.

• Proof:

10/9/2019

- (Same as 2-consumer case. Homework.)

SWT without differentiability

10/9/2019

- In Section 3.1, we assumed differentiability to use Kuhn-Tucker conditions to prove SWT
- Now we drop differentiability and appeal directly to Supporting Hyperplane Theorem

• To do that, we first need a lemma...

Lemma 3.2-1: Quasi-concavity of V

- If $U^h, h = 1, \cdots, H$ is quasi-concave,
- Then so is the indirect utility function

$$V^{1}(\vec{x}) = \max_{\vec{x}^{h}} \left\{ U^{1}(\vec{x}^{1}) \middle| \sum_{h=1}^{H} \vec{x}^{h} \le \vec{x}, \right.$$

$$U^h(\vec{x}^h) \ge U^h(\vec{x}^h), h \ne 1 \bigg\}$$

Joseph Tao-yi Wang General Equilibrium for Exchange

Lemma 3.2-1: Quasi-concavity of V

10/9/2019

• Proof: For aggregate endowment \vec{a}, \vec{b} , claim for $\vec{c} = (1 - \lambda)\vec{a} + \lambda\vec{b}, V^{1}(\vec{c}) \ge \min\{V^{1}(\vec{a}), V^{1}(\vec{b})\}$ Assume $\{\vec{a}^h\}_{h=1}^H$ solves $V^1(\vec{a}) = U^1(\vec{a}^1)$ $\{\vec{b}^h\}_{h=1}^H$ solves $V^1(\vec{b}) = U^1(\vec{b}^1)$ $\{\vec{c}^h\}_{h=1}^H$ is feasible since $\vec{c}^h = (1-\lambda)\vec{a}^h + \lambda\vec{b}^h$ $\Rightarrow V^1(\vec{c}) \ge U^1(\vec{c}^1)$

Now only need to prove $U^1(\vec{c}^1) \ge \min\{V^1(\vec{a}), V^1(\vec{b})\}.$

Lemma 3.2-1: Quasi-concavity of V

Since
$$\{\vec{a}^{h}\}_{h=1}^{H}$$
 solves $V^{1}(\vec{a})$,
 $\{\vec{b}^{h}\}_{h=1}^{H}$ solves $V^{1}(\vec{b})$,
 $U^{1}(\vec{a}^{1}) = V^{1}(\vec{a})$ and $U^{1}(\vec{b}^{1}) = V^{1}(\vec{b})$
by quasi-concavity of U^{1}
 $\Rightarrow U^{1}(\vec{c}^{1}) \ge \min\{U^{1}(\vec{a}^{1}), U^{1}(\vec{b}^{1})\}$
 $= \min\{V^{1}(\vec{a}), V^{1}(\vec{b})\}$
 $\Rightarrow V^{1}(\vec{c}) \ge U^{1}(\vec{c}^{1}) \ge \min\{V^{1}(\vec{a}), V^{1}(\vec{b})\}$

Joseph Tao-yi Wang General Equilibrium for Exchange

Proposition 3.2-2: Second Welfare Theorem

- Consumer $h \in \mathcal{H}$ has endowment $\vec{\omega}^h \in \mathbb{R}^n_+$
- Suppose $X^h = \mathbb{R}^n_+$, and utility functions $U^h(\cdot)$
- continuous, quasi-concave, strictly monotonic.
- If $\{\vec{x}^h\}_{h=1}^H$ where $\vec{x}^h \neq \vec{0}$ is Pareto efficient,
- then there exist a price vector $\vec{p} \gg \vec{0}$ such that $U^h(\vec{x}^h) > U^h(\vec{x}^h) \Rightarrow \vec{p} \cdot \vec{x}^h > \vec{p} \cdot \vec{x}^h$

• Proof:

10/9/2019

Proposition 3.2-2: Second Welfare Theorem

• Proof: Want to apply Supporting Hyperplane Theorem to the set $\{\vec{x}|V^1(\vec{x}) \ge V^1(\vec{\omega})\}$ where

 $V^{1}(\vec{x}) = \max_{\vec{x}^{h}} \left\{ U^{1}(\vec{x}^{1}) \middle| \sum_{h=1}^{n} \vec{x}^{h} \le \vec{x}, \right.$ (2D example) x_2 $(\vec{\omega})$ (\vec{x}) $U^{h}(\vec{x}^{h}) \ge U^{h}(\vec{\mathbf{x}}^{h}), h \ne 1 \left. \right\}$ Need to show that: $\vec{\omega}$ 1. $\vec{\omega}$ on boundary $\vec{p} \cdot \vec{x} = \vec{p} \cdot \vec{\omega}$ 2. Set is convex Joseph Tao-yi Wang General Equilibrium for Exchange 10/9/2019

Proposition 3.2-2: Second Welfare Theorem

- Proof: Assume nobody has zero allocation
 Relaxing this is easily done...
- By Lemma 3.2-1, $V^1(\vec{x})$ is quasi-concave - Convex upper contour set $\{\vec{x}|V^1(\vec{x}) \ge V^1(\vec{\omega})\}$
- $V^1(\vec{x})$ is strictly increasing since $U^1(\cdot)$ is also and any increment could be given to consumer 1
- Since $\{\vec{\mathbf{x}}^h\}_{h=1}^H$ is Pareto efficient, $V_{II}^1(\vec{\omega}) = U^1(\vec{\mathbf{x}}^1)$
- Since $U^1(\cdot)$ is strictly increasing, $\sum_{k=1}^{H} \vec{x}^k = \vec{\omega}$

10/9/2019

Joseph Tao-yi Wang General Equilibrium for Exchange

h=1

Proposition 3.2-2: Second Welfare Theorem

- Proof (Continued):
- Since $\vec{\omega}$ is on the boundary of $\{\vec{x}|V^1(\vec{x}) \ge V^1(\vec{\omega})\}$
- By the Supporting Hyperplane Theorem, there exists a vector $\vec{p} \neq \vec{0}$ such that $V^1(\vec{x}) > V^1(\vec{\omega}) \Rightarrow \vec{p} \cdot \vec{x} > \vec{p} \cdot \vec{\omega}$ and $V^1(\vec{x}) \ge V^1(\vec{\omega}) \Rightarrow \vec{p} \cdot \vec{x} \ge \vec{p} \cdot \vec{\omega}$
- Claim: $\vec{p} \gg \vec{0}$, then we can show that $U^h(\vec{x}^h) > U^h(\vec{x}^h) \Rightarrow \vec{p} \cdot x^h > \vec{p} \cdot \vec{x}^h$

10/9/2019

Proposition 3.2-2: Second Welfare Theorem

- Proof (Continued):
- Why $\vec{p} \gg \vec{0}$? If not, define $\vec{\delta} = (\delta_1, \cdots, \delta_n) > 0$
- such that $\delta_j > 0$ iff $p_j < 0$ (others = 0)
- Then, $V^1(\vec{\omega} + \vec{\delta}) > V^1(\vec{\omega})$ and $\vec{p} \cdot (\vec{\omega} + \vec{\delta}) < \vec{p} \cdot \vec{\omega}$
- Contradicting (Supporting Hyperplane Thm) \overline{H}

$$U^{h}(\vec{x}^{h}) \ge U^{h}(\vec{x}^{h}) \Rightarrow \vec{p} \cdot \sum_{h=1} \vec{x}^{h} \ge \vec{p} \cdot \vec{\omega}$$
$$V^{1}(\vec{x}) > V^{1}(\vec{\omega}) \Rightarrow \vec{p} \cdot \sum_{h=1} \vec{x}^{h} > \vec{p} \cdot \vec{\omega}$$

10/9/2019

Proposition 3.2-2: Second Welfare Theorem

- Since $U^h(\vec{x}^h) \ge U^h(\vec{x}^h) \Rightarrow \vec{p} \cdot \sum_{h=1}^n \vec{x}^h \ge \vec{p} \cdot \sum_{h=1}^n \vec{x}^h$
- Set $\vec{x}^k = \vec{x}^k$ for all $k \neq h$, then for consumer h $U^h(\vec{x}^h) \ge U^h(\vec{x}^h) \Rightarrow \vec{p} \cdot \vec{x}^h \ge p \cdot \vec{x}^h$
- Need to show strict inequality implies strict...
- If not, then $U^h(\vec{x}^h) > U^h(\vec{x}^h) \Rightarrow \vec{p} \cdot \vec{x}^h = \vec{p} \cdot \vec{x}^h$
- Hence, $\vec{p} \cdot \lambda \vec{x}^h < \vec{p} \cdot \vec{x}^h$ for all $\lambda \in (0, 1)$ U^h continuous $\Rightarrow U^h(\lambda \vec{x}^h) > U^h(\vec{x}^h)$ for λ near 1
- Contradiction!

Why should I care about this (or the math)?

• In Ch.3 we saw three different versions of the SWT, each with different assumptions...

Supporting Hyperplane Theorem

Kuhn-Tucker Conditions

FOC (Interior Solution)

+ Strict Monotonicity

Differentiable`

Convexity

Continuity

Need to know when can you use which...

10/9/2019

Summary of 3.2

- Pareto Efficiency:
 - Cannot make one better off without hurting others
- Walrasian Equilibrium: market clearing prices
- Welfare Theorems:
 - First: Walrasian Equilibrium is Pareto Efficient
 - Second: Pareto Efficient allocations can be supported as Walrasian Equilibria (with transfer)
- Homework: Prove FWT for n-consumers – (Optional: 2009 final-Part B)

10/9/2019