Budget Constrained Choice with Two Commodities

Joseph Tao-yi Wang 2019/9/25

(Lecture 5, Micro Theory I)

The Consumer Problem

- We have some powerful tools:
- Constrained Maximization (Shadow Prices)
- Envelope Theorem (Changing Environment)
- Can help us understand consumer behavior?

Such as:

- Maximizing utility, facing a budget constraint
- Minimizing cost, maintaining certain welfare level

Key Problems to Consider

- Total Price Effect =
- Substitution Effect + Income Effect
- Consumer Problem: How can consumer's Utility Maximization result in demand?
- Income Effect: How does an increase/decrease in income (budget) affect demand?
- Dual Problem: How is Minimizing Expenditure related to Maximizing Utility?
- Substitution Effect: How does an increase in commodity price affect compensated demand?

Why do we care about this? Public Policy!

- Taiwan's ministry of defense has to decide whether to buy more fighter jets, or more submarines given a tight budget
- How does the military rank each combination?
- How do they choose which combination to buy?
- How would a price change affect their decision?
- How would a boycott in defense budget affect their decision?

Continuous Demand Function

Consumer with income I faces prices $\vec{p}=\left(p_{1}, p_{2}\right)$

$$
\max _{\vec{x}}\left\{U(\vec{x}) \mid \vec{p} \cdot \vec{x} \leq I, \vec{x} \in \mathbb{R}_{+}^{2}\right\}
$$

- Assume: LNS (local non-satiation)
- Then, consumer spends all his/her income!
- $U(\vec{x})$ is continuous, strictly quasi-concave on \mathbb{R}_{+}^{2} - There is a unique solution $\vec{x}^{0}=\vec{x}(\vec{p}, I)$
- Then, by Prop. 2.2-1, $\vec{x}(\vec{p}, I)$ must be continuous. - aka Theory of Maximum I (Prop. C.4-1 on p. 581)

Appendix C:

Prop.C.4-1 Theory of Maximum I

- For f continuous, define

$$
\left.\begin{array}{rl}
F(\vec{\alpha})=\max _{\vec{x}}\{f(\vec{x}, \vec{\alpha}) \mid \vec{x} \geq 0, & \vec{x}
\end{array} \in X(\vec{\alpha}) \subset \mathbb{R}^{n}, ~ \vec{\alpha} \in A \subset \mathbb{R}^{m}\right\},
$$

- If (i) for each $\vec{\alpha}$ there is a unique $\vec{x}^{*}(\vec{\alpha})=\arg \max _{\vec{x}}\{f(\vec{x}, \vec{\alpha}) \mid \vec{x} \geq 0, \vec{x} \in X(\vec{\alpha}), \vec{\alpha} \in A\}$
- and (ii) $X(\vec{\alpha})$ is a compact-valued correspondence that is continuous at $\vec{\alpha}^{0}$
- Then, $\vec{x}^{*}(\vec{\alpha})$ is continuous at $\vec{\alpha}^{0}$

Continuous Demand of Prices and Income

- $U(\vec{x})$ is continuous, strictly quasi-concave on \mathbb{R}_{+}^{2} $F(\vec{\alpha})=\max _{\vec{x}}\left\{U(\vec{x}) \mid \vec{p} \cdot \vec{x} \leq I, \vec{x} \in \mathbb{R}_{+}^{2}\right\}$
- If (i) for each $\vec{\alpha}$ there is a unique

$$
\vec{x}^{0}=\vec{x}(\vec{p}, I)
$$

Consumer with income I faces prices $\vec{p}=\left(p_{1}, p_{2}\right)$

- Then, $\vec{x}(\vec{p}, I)$ must be continuous.

Some Stronger Convenience Assumptions

- Assume:
- $U(\vec{x})$ is continuously differentiable on \mathbb{R}_{+}^{2} - FOC is gradient vector of utility (\& constraints)
- LNS-plus:

$$
\frac{\partial U}{\partial \vec{x}}(\vec{x})=\left(\frac{\partial U}{\partial x_{1}}, \frac{\partial U}{\partial x_{2}}\right) \gg \overrightarrow{0} \text { for all } \vec{x} \in \mathbb{R}_{+}^{2}
$$

$-\mathrm{MU}>0$: Preferences are strictly increasing

- No corners:

$$
\lim _{x_{j} \rightarrow 0} \frac{\partial U}{\partial x_{j}}=\infty, j=1,2
$$

- Always wants to consume some of everything

Indifference Curve Analysis (Lagrangian Ver.)

A Consumer with income I, facing prices p_{1}, p_{2}

$$
\begin{gathered}
\max _{\vec{x}}\left\{U(\vec{x}) \mid \vec{p} \cdot \vec{x} \leq I, \vec{x} \in \mathbb{R}_{+}^{2}\right\} \\
\text { Lagrangian is } \mathfrak{L}=U+\lambda(I-\vec{p} \cdot \vec{x}) \\
(F O C) \quad \frac{\partial \mathfrak{L}}{\partial x_{j}}=\frac{\partial U}{\partial x_{j}}\left(\vec{x}^{*}\right)-\lambda p_{j}=0, j=1,2 \\
\frac{\frac{\partial U}{\partial x_{1}}\left(\vec{x}^{*}\right)}{p_{1}}=\frac{\frac{\partial U}{\partial x_{2}}\left(\vec{x}^{*}\right)}{p_{2}}=\lambda
\end{gathered}
$$

Meaning of FOC

1. Same marginal value for last dollar spent on each commodity $\frac{\frac{\partial U}{\partial x_{1}}\left(\vec{x}^{*}\right)}{p_{1}}=\frac{\frac{\partial U}{\partial x_{2}}\left(\vec{x}^{*}\right)}{p_{2}}=\lambda$

- Does Taiwan get the same defense MU on fighter jets and submarines?

2. Indifference Curve tangent to Budget Line

$$
M R S\left(\vec{x}^{*}\right)=\frac{\frac{\partial U}{\partial x_{1}}\left(\vec{x}^{*}\right)}{\frac{\partial U}{\partial x_{2}}\left(\vec{x}^{*}\right)}=\frac{p_{1}}{p_{2}}
$$

Three Examples

- Quasi-Linear Convex Preference

$$
U(\vec{x})=v\left(x_{1}\right)+\alpha x_{2}
$$

- Cobb-Douglas Preferences

$$
U(\vec{x})=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}, \alpha_{1}, \alpha_{2}>0
$$

- CES Utility Function

$$
U(\vec{x})=\left(\alpha_{1} x_{1}^{1-\frac{1}{\theta}}+\alpha_{2} x_{2}^{1-\frac{1}{\theta}}\right)^{\frac{1}{1-\frac{1}{\theta}}}
$$

Quasi-Linear Convex Utility

$\max _{\vec{x}}\left\{U(\vec{x})=v\left(x_{1}\right)+\alpha x_{2} \mid p_{1} x_{1}+p_{2} x_{2} \leq I, x \in \mathbb{R}_{+}^{2}\right\}$

- FOC :

$$
\frac{\frac{\partial U}{\partial x_{1}}}{p_{1}}=\frac{\frac{\partial U}{\partial x_{2}}}{p_{2}}=\frac{v^{\prime}\left(x_{1}\right)}{p_{1}}=\frac{\alpha}{p_{2}}(=\lambda)
$$

- Implication: $\frac{p_{1}}{p_{2}}=\frac{v^{\prime}\left(x_{1}\right)}{\alpha} \quad(\mathrm{MRS}=$ price $)$
- Note that x_{2} is irrelevant...
- What does this mean?

Income Effect

- Vertical Income Expansion Path (at interior)

Cobb-Douglas Preferences

$\max U\left(x_{1}, x_{2}\right)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}, \alpha_{1}+\alpha_{2}=1$
x_{1}, x_{2}
s.t. $P_{x_{1}} \cdot x_{1}+P_{x_{2}} \cdot x_{2} \leq I=P_{x_{1}} \cdot \omega_{x_{1}}+P_{x_{2}} \cdot \omega_{x_{2}}$
$\mathcal{L}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}+\lambda \cdot\left[I-P_{x_{1}} \cdot x_{1}-P_{x_{2}} \cdot x_{2}\right]$
FOC: (for interior solutions)
$\frac{\partial \mathcal{L}}{\partial x_{1}}=\alpha_{1} \cdot \frac{x_{2}^{\alpha_{2}}}{x_{1}^{\alpha_{2}}}-\lambda \cdot P_{x_{1}}=0$
$\frac{\partial \mathcal{L}}{\partial x_{2}}=\alpha_{2} \cdot \frac{x_{1}^{\alpha_{1}}}{x_{2}^{\alpha_{1}}}-\lambda \cdot P_{x_{2}}=0$
$\frac{\partial \mathcal{L}}{\partial \lambda}=I-P_{x_{1}} \cdot x_{1}-P_{x_{2}} \cdot x_{2}=0$

Cobb-Douglas Preferences

- Meaning of FOC: $M R S=\frac{P_{x_{1}}}{P_{x_{2}}}$

$$
\begin{aligned}
& \frac{P_{x_{1}}}{P_{x_{2}}}=\frac{\alpha_{1}}{\alpha_{2}} \cdot \frac{x_{2}}{x_{1}} \Rightarrow x_{1}=\frac{\alpha_{1}}{\alpha_{2}} \cdot \frac{P_{x_{2}}}{P_{x_{1}}} \cdot x_{2} \\
& \Rightarrow I=P_{x_{1}} \cdot x_{1}+P_{x_{2}} \cdot x_{2}=\frac{\alpha_{1}+\alpha_{2}}{\alpha_{2}} \cdot P_{x_{2}} \cdot x_{2} \\
& \Rightarrow x_{2}^{*}=\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}} \cdot \frac{I}{P_{x_{2}}}, x_{1}^{*}=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}} \cdot \frac{I}{P_{x_{1}}}
\end{aligned}
$$

Income Effect

- Linear Income Expansion Path...

CES Utility Function

$$
\begin{aligned}
& U(\vec{x})=\left(\alpha_{1} x_{1}^{1-\frac{1}{\theta}}+\alpha_{2} x_{2}^{1-\frac{1}{\theta}}\right)^{\frac{1}{1-\frac{1}{\theta}}} \\
& \mathcal{L}=\left(\alpha_{1} x_{1}^{1-\frac{1}{\theta}}+\alpha_{2} x_{2}^{1-\frac{1}{\theta}}\right)^{\frac{1}{1-\frac{1}{\theta}}}+\lambda \cdot\left[I^{A}-P_{x} \cdot x-P_{y} \cdot y\right] \\
& \text { - FOC: (for interior solutions) } \\
& \frac{\partial \mathcal{L}}{\partial x_{1}}=\alpha_{1} x_{1}^{-\frac{1}{\theta}} \cdot\left(\alpha_{1} x_{1}^{1-\frac{1}{\theta}}+\alpha_{2} x_{2}^{1-\frac{1}{\theta}}\right)^{\frac{1}{\theta-1}}-\lambda \cdot P_{x_{1}}=0 \\
& \frac{\partial \mathcal{L}}{\partial x_{2}}=\alpha_{2} x_{2}^{-\frac{1}{\theta}} \cdot\left(\alpha_{1} x_{1}^{1-\frac{1}{\theta}}+\alpha_{2} x_{2}^{1-\frac{1}{\theta}}\right)^{\frac{1}{\theta-1}}-\lambda \cdot P_{x_{2}}=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=I-P_{x_{1}} \cdot x_{1}-P_{x_{2}} \cdot x_{2}=0
\end{aligned}
$$

CES Utility Function

$$
\begin{aligned}
\frac{P_{x_{1}}}{P_{x_{2}}} & =\frac{\alpha_{1}}{\alpha_{2}} \cdot\left(\frac{x_{2}}{x_{1}}\right)^{\frac{1}{\theta}} \Rightarrow x_{1}=\left(\frac{\alpha_{1}}{\alpha_{2}} \cdot \frac{P_{x_{2}}}{P_{x_{1}}}\right)^{\theta} \cdot x_{2} \\
\Rightarrow I & =P_{x_{1}} \cdot x_{1}+P_{x_{2}} \cdot x_{2} \\
& =\left[\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{\theta} \cdot\left(\frac{P_{x_{2}}}{P_{x_{1}}}\right)^{\theta-1}+1\right] \cdot P_{x_{2}} \cdot x_{2} \\
\Rightarrow x_{2}^{*} & =\frac{\alpha_{2}^{\theta} P_{x_{1}}^{\theta-1}}{\alpha_{1}^{\theta} P_{x_{2}}^{\theta-1}+\alpha_{2}^{\theta} P_{x_{1}}^{\theta-1}} \cdot \frac{I}{P_{x_{2}}}, \\
x_{1}^{*} & =\frac{\alpha_{1}^{\theta} P_{x_{1}}^{\theta-1}}{\alpha_{1}^{\theta} P_{x_{2}}^{\theta-1}+\alpha_{2}^{\theta} P_{x_{1}}^{\theta-1}} \cdot \frac{I}{P_{x_{1}}}
\end{aligned}
$$

Income Effect

- Linear Income Expansion Path...
- Cobb-Douglas is a special case of CES! $(\theta=1)$

Income Effects

Income Effects

- If IEP is steeper than the line joining $0 \& x^{*}$
- Then,

$$
\text { Slope of IEP at } \vec{x}^{*}=\frac{\frac{\partial x_{2}}{\partial I}}{\frac{\partial x_{1}}{\partial I}}>\frac{x_{2}^{*}}{x_{1}^{*}}
$$

- Or,

$$
\mathcal{E}\left(x_{2}, I\right)=\frac{I}{x_{2}} \frac{\partial x_{2}}{\partial I}>\mathcal{E}\left(x_{1}, I\right)=\frac{I}{x_{1}} \frac{\partial x_{1}}{\partial I}
$$

- Lemma 2.2-2: Expenditure share weighted average income elasticity $=1$
- So, $\mathcal{E}\left(x_{2}, I\right)>1>\mathcal{E}\left(x_{1}, I\right)$

Lemma 2.2-2:

Weighted Average Income Elasticity

- (Expenditure-Share Weighted) Average IE $=1$

$$
k_{1} \mathcal{E}\left(x_{1}^{*}, I\right)+k_{2} \mathcal{E}\left(x_{2}^{*}, I\right)=1
$$

- Where $k_{j}=\frac{p_{j} x_{j}^{*}}{I}$ is the expenditure share of x_{j} Proof:

$$
\begin{gathered}
p_{1} x_{1}^{*}(\vec{p}, I)+p_{2} x_{2}^{*}(\vec{p}, I)=I \Rightarrow p_{1} \frac{\partial x_{1}^{*}}{\partial I}+p_{2} \frac{\partial x_{2}^{*}}{\partial I}=1 \\
\Rightarrow \xlongequal[k_{1}]{\Rightarrow\left(\frac{p_{1} x_{1}^{*}}{I}\right)} \xlongequal{\frac{I}{x_{1}^{*}} \frac{\partial x_{1}^{*}}{\partial I}}+\frac{\left(\frac{p_{2} x_{2}^{*}}{I}\right)}{\left.\underline{k_{2}^{*}}\right)} \frac{I}{x_{2}^{*} \frac{\partial x_{2}^{*}}{\partial I}}=1 \\
\mathcal{E}\left(x_{2}^{*}, I\right)
\end{gathered}
$$

Income and Price Elasticities

- From $p_{1} x_{1}^{*}(\vec{p}, I)+p_{2} x_{2}^{*}(\vec{p}, I)=I$, we have:

1. Average Income Effect $=1$

$$
k_{1} \mathcal{E}\left(x_{1}^{*}, I\right)+k_{2} \mathcal{E}\left(x_{2}^{*}, I\right)=1
$$

- By differentiating with respect to I
- Differentiating with respect to p_{i}, we have:

2. Demand for all goods has negative average response to a price increase of one good

Income and Price Elasticities

- From $p_{1} x_{1}^{*}(\vec{p}, I)+p_{2} x_{2}^{*}(\vec{p}, I)=I$,
- Differentiating with respect to p_{i}, we have:

$$
\begin{aligned}
& \Rightarrow x_{i}^{*}(\vec{p}, I)+p_{1} \frac{\partial x_{1}^{*}}{\partial p_{1}}+p_{2} \frac{\partial x_{2}^{*}}{\partial p_{1}}=0 \\
& \left.\Rightarrow \frac{\left[\frac{p_{i} x_{i}^{*}}{I}\right]}{k_{i}}+\frac{\left[\frac{p_{1} x_{1}^{*}}{I}\right]}{k_{1}} \frac{\frac{p_{i}}{x_{1}^{*}} \frac{\partial x_{1}^{*}}{\partial p_{i}}}{\mathcal{E}\left(x_{1}^{*}, p_{i}\right)}+\frac{\left[\frac{p_{2} x_{2}^{*}}{I}\right]}{k_{2}} \frac{\frac{p_{i}}{x_{2}^{*}} \frac{\partial x_{2}^{*}}{\partial p_{i}}}{\overline{\mathcal{E}}\left(x_{2}^{*}\right.}, p_{i}\right)
\end{aligned}
$$

- Demand for all goods has negative average response to a price increase of one good

$$
\Rightarrow k_{1} \mathcal{E}\left(x_{1}^{*}, p_{i}\right)+k_{2} \mathcal{E}\left(x_{2}^{*}, p_{i}\right)=-k_{i}<0
$$

Income and Price Elasticities

- From $p_{1} x_{1}^{*}(\vec{p}, I)+p_{2} x_{2}^{*}(\vec{p}, I)=I$, we have:

1. Average IE $=1 k_{1} \mathcal{E}\left(x_{1}^{*}, I\right)+k_{2} \mathcal{E}\left(x_{2}^{*}, I\right)=1$
2. Average demand response is negative to price increase of one good

$$
k_{1} \mathcal{E}\left(x_{1}^{*}, p_{i}\right)+k_{2} \mathcal{E}\left(x_{2}^{*}, p_{i}\right)=-k_{i}<0
$$

- Using $x_{i}^{*}(r \vec{p}, r I)=x_{i}^{*}(\vec{p}, I), r>0$,
- Can obtain $\mathcal{E}\left(x_{1}^{*}, p_{i}\right)+\mathcal{E}\left(x_{2}^{*}, p_{i}\right)+\mathcal{E}\left(x_{i}^{*}, I\right)=0$

3. Substitute/Complement if other is price elastic/inelastic \& has income elasticity $=1$

Income and Price Elasticities

- Why $x_{i}^{*}(r \vec{p}, r I)=x_{i}^{*}(\vec{p}, I), r>0$?
- Money illusion! Same budget constraint...
- Differentiate with respect to r

$$
\Rightarrow p_{1} \frac{\partial x_{i}^{*}}{\partial p_{1}}+p_{2} \frac{\partial x_{i}^{*}}{\partial p_{2}}+I \frac{\partial x_{i}^{*}}{\partial I}=0
$$

Income and Price Elasticities

- Why $x_{i}^{*}(r \vec{p}, r I)=x_{i}^{*}(\vec{p}, I), r>0$?
- Money illusion! Same budget constraint...
- Differentiate with respect to r \& divide by x_{i}^{*}

$$
\begin{aligned}
& \Rightarrow \underline{\underline{\frac{p_{1}}{x_{i}^{*}} \frac{\partial x_{i}^{*}}{\partial p_{1}}}}+\underline{\underline{\frac{p_{2}}{x_{i}^{*}} \frac{\partial x_{i}^{*}}{\partial p_{2}}}}+\underline{\underline{\frac{I}{x_{i}^{*}} \frac{\partial x_{i}^{*}}{\partial I}}}=0 \\
& \Rightarrow \mathcal{E}\left(x_{1}^{*}, p_{i}\right)+\mathcal{E}\left(x_{2}^{*}, p_{i}\right)+\mathcal{E}\left(x_{i}^{*}, I\right)=0
\end{aligned}
$$

3. Substitute/Complement if other is price elastic/inelastic \& has income elasticity $=1$

Income and Price Elasticities

- From $p_{1} x_{1}^{*}(\vec{p}, I)+p_{2} x_{2}^{*}(\vec{p}, I)=I$, we have:

1. Average IE $=1 k_{1} \mathcal{E}\left(x_{1}^{*}, I\right)+k_{2} \mathcal{E}\left(x_{2}^{*}, I\right)=1$
2. Average demand response is negative to price increase of one good

$$
k_{1} \mathcal{E}\left(x_{1}^{*}, p_{i}\right)+k_{2} \mathcal{E}\left(x_{2}^{*}, p_{i}\right)=-k_{i}<0
$$

- Using $x_{i}^{*}(r \vec{p}, r I)=x_{i}^{*}(\vec{p}, I), r>0$,

3. Substitute/Complement if other is price elastic/inelastic \& has income elasticity $=1$

$$
\mathcal{E}\left(x_{1}^{*}, p_{i}\right)+\mathcal{E}\left(x_{2}^{*}, p_{i}\right)+\mathcal{E}\left(x_{i}^{*}, I\right)=0
$$

Dual Problem: Minimizing Expenditure

- Consider the least costly way to achieve \bar{U}

$$
M(\vec{p}, \bar{U})=\min _{\vec{x}}\{\vec{p} \cdot \vec{x} \mid U(\vec{x}) \geq \bar{U}\}
$$

- How can you solve this?

$$
\begin{aligned}
& \mathfrak{L}=-\vec{p} \cdot \vec{x}+\lambda(U(\vec{x})-\bar{U}) \\
&(F O C) \quad \frac{\partial \mathfrak{L}}{\partial x_{j}}=-p_{j}+\lambda \frac{\partial U}{\partial x_{j}}\left(\vec{x}^{*}\right)=0, j=1,2 \\
& \frac{p_{1}}{\frac{\partial U}{\partial x_{1}}}=\frac{p_{2}}{\frac{\partial U}{\partial x_{2}}}=\lambda \Rightarrow \text { Solve for } \xlongequal[\underline{\vec{x}^{c}(\vec{p}, \bar{U})}]{\text { Compensated Demand }}
\end{aligned}
$$

Dual Problem: Minimizing Expenditure

- Can view it as the "sister" (dual) problem of:

$$
\max _{\vec{x}}\{U(\vec{x}) \mid \vec{x} \geq \overrightarrow{0}, \vec{p} \cdot \vec{x} \leq I\}
$$

- Because we have:
- Lemma 2.2-3 Duality Lemma
- LNS holds, $\vec{x}^{*} \in \arg \max _{\vec{x}}\{U(\vec{x}) \mid \vec{x} \geq \overrightarrow{0}, \vec{p} \cdot \vec{x} \leq I\}$
- Then, Max U

$$
U(\vec{x}) \geq U\left(\vec{x}^{*}\right) \Rightarrow \vec{p} \cdot \vec{x} \geq \vec{p} \cdot \vec{x}^{*}
$$

- So, $\vec{x}^{*} \in \arg \min _{\vec{x}}\left\{\vec{p} \cdot \vec{x} \mid \vec{x} \geq \overrightarrow{0}, U(\vec{x}) \geq \underset{\min }{ }\left(\vec{x}^{*}\right)\right\}$

Lemma 2.2-3 Duality Lemma

- LNS holds, $\vec{x}^{*} \in \arg \max _{\vec{x}}\{U(\vec{x}) \mid \vec{x} \geq \overrightarrow{0}, \vec{p} \cdot \vec{x} \leq I\}$
- Then, $U(\vec{x}) \geq U\left(\vec{x}^{*}\right) \Rightarrow \vec{p} \cdot \vec{x} \geq \vec{p} \cdot \vec{x}^{*}$
$\min \mathrm{E}$
- So, $\vec{x}^{*} \in \arg \min _{\vec{x}}\left\{\vec{p} \cdot \vec{x} \mid \vec{x} \geq \overrightarrow{0}, U(\vec{x}) \geq U\left(\vec{x}^{*}\right)\right\}$

Proof: Consider bundle \vec{x}^{\prime} such that $\vec{p} \cdot \vec{x}^{\prime}<I$.

- $N\left(\vec{x}^{\prime}, \vec{\delta}\right) \subset\{\vec{x} \mid \vec{x} \geq \overrightarrow{0}, \vec{p} \cdot \vec{x} \leq I\}$ for some small $\vec{\delta}$
- LNS $\Rightarrow \exists \vec{x}^{\prime \prime} \in N\left(\vec{x}^{\prime}, \vec{\delta}\right)$ such that $\vec{x}^{\prime \prime} \succ \vec{x}^{\prime}$

So $\vec{p} \cdot \vec{x}^{\prime}<I \Rightarrow U\left(\vec{x}^{\prime}\right)<U\left(\vec{x}^{*}\right)$ (Equivalent!)

Expenditure Function and Value Function:

- For utility \bar{U} and price vector \vec{p}, Expenditure Function is $M(\vec{p}, \bar{U})=\min _{\vec{x}}\{\vec{p} \cdot \vec{x} \mid U(\vec{p}) \geq \bar{U}\}$
- Claim: The Value Function (maximized utility)

$$
V(\vec{p}, I)=\max _{\vec{x}}\{U(\vec{x}) \mid \vec{p} \cdot \vec{x} \leq I\}
$$

- is strictly increasing over I (by LNS).
- Then, for any \bar{U}, there is a unique income M such that $\bar{U}=V(\vec{p}, M)$
- Inverting this, we can solve for $M(\vec{p}, \bar{U})$

Claim: Value Function is Strictly Increasing

- Claim: The Value Function is strictly increasing

$$
V(\vec{p}, I)=\max _{\vec{x}}\{U(\vec{x}) \mid \vec{p} \cdot \vec{x} \leq I\}
$$

- Proof: If not, there exists $I_{1}<I_{2}$ and $\vec{x}_{1}^{*}, \vec{x}_{2}^{*}$ - such that $U\left(\vec{x}_{1}^{*}\right)=V\left(\vec{p}, I_{1}\right) \geq V\left(\vec{p}, I_{2}\right)=U\left(\vec{x}_{2}^{*}\right)$
- LNS yields $\vec{p} \cdot \vec{x}_{1}^{*}=I_{1}<I_{2}$, and there exists \vec{x}^{\prime} - such that $U\left(\vec{x}^{\prime}\right)>U\left(\vec{x}_{1}^{*}\right) \geq U\left(\vec{x}_{2}^{*}\right)$
- In neighborhood $N\left(\vec{x}_{1}^{*}, \vec{\delta}\right) \subset\left\{\vec{x} \mid \vec{x} \geq \overrightarrow{0}, \vec{p} \cdot \vec{x} \leq I_{2}\right\}$
- But this means \vec{x}^{\prime} solves $V\left(\vec{p}, I_{2}\right)$ not $\vec{x}_{2}^{*} .(\rightarrow \leftarrow)$

Dual Problem: Minimizing Expenditure

- In fact, minimizing expenditure yields:

$$
\frac{p_{1}}{\frac{\partial U}{\partial x_{1}}}=\frac{p_{2}}{\frac{\partial U}{\partial x_{2}}}=\lambda
$$

- Maximize Utility's FOC yields:

$$
\frac{\frac{\partial U}{\partial x_{1}}}{p_{1}}=\frac{\frac{\partial U}{\partial x_{2}}}{p_{2}}=\lambda
$$

- This close relationship between $\vec{x}^{c}(\vec{p}, \bar{U})$ and $\vec{x}(\vec{p}, I)$ indicates why they are "sisters"...

Compensated Demand

$\vec{x}^{c}(\vec{p}, \bar{U})$ solves $M(\vec{p}, \bar{U})=\min _{\vec{x}}\{\vec{p} \cdot \vec{x} \mid U(\vec{x}) \leq \bar{U}\}$

- By Envelope Theorem:
- Effect of "Compensated" Price Change is - aka Substitution Effect...

$$
\frac{\partial M}{\partial p_{j}}=\vec{x}_{j}^{c}(\vec{p}, \bar{U})
$$

- How much more does Taiwan have to pay if the price of submarines increase (to maintain the same level of defense)?

Elasticity of

Substitution (Compensated Demand)

$$
\sigma=\mathcal{E}\left(\frac{x_{2}^{c}}{x_{1}^{c}}, \frac{p_{1}}{p_{2}}\right)
$$

Consumption ratio change in response to price change
Claim:

$$
\vec{p}^{0} \cdot \vec{x}=\vec{p}^{0} \cdot \vec{x}^{0}
$$

$$
\begin{aligned}
\sigma & =\mathcal{E}\left(\frac{x_{2}^{c}}{x_{1}^{c}}, p_{1}\right) \\
& =\frac{\mathcal{E}\left(x_{2}^{c}, p_{1}\right)}{k_{1}}=-\frac{\mathcal{E}\left(x_{1}^{c}, p_{1}\right)}{1-k_{1}}, k_{1}=\frac{p_{1} x_{1}}{\vec{p} \cdot \vec{x}}
\end{aligned}
$$

Lemma 2.2-4 $\quad \sigma=\mathcal{E}\left(x_{2}^{c}, p_{1}\right)-\mathcal{E}\left(x_{1}^{c}, p_{1}\right)$ p.502: $\quad \mathcal{E}(y, x)=\frac{x}{y} \cdot \frac{d y}{d x}=x \frac{d}{d x} \ln y=\mathcal{E}(\alpha y, \beta x)$

$$
\begin{aligned}
\sigma & =\mathcal{E}\left(\frac{x_{2}^{c}}{x_{1}^{c}}, \frac{p_{1}}{p_{2}}\right)=\mathcal{E}\left(\frac{x_{2}^{c}}{x_{1}^{c}}, p_{1}\right) \\
& =p_{1} \frac{d}{d p_{1}} \ln \left(\frac{x_{2}^{c}}{x_{1}^{c}}\right)=p_{1} \frac{d}{d p_{1}}\left(\ln x_{2}^{c}-\ln x_{1}^{c}\right) \\
& =p_{1} \frac{d}{d p_{1}}\left(\ln x_{2}^{c}\right)-p_{1} \frac{d}{d p_{1}}\left(\ln x_{1}^{c}\right) \\
& =\mathcal{E}\left(x_{2}^{c}, p_{1}\right)-\mathcal{E}\left(x_{1}^{c}, p_{1}\right)
\end{aligned}
$$

Prop. 2.2-5

ES \& Compensated Price Elasticity

- Relation between Elasticity of Substitution and Compensated Own Price Elasticity

1) $\sigma=\mathcal{E}\left(\frac{x_{2}^{c}}{x_{1}^{c}}, p_{1}\right)=\frac{\mathcal{E}\left(x_{2}^{c}, p_{1}\right)}{k_{1}}, \quad k_{1}=\frac{p_{1} x_{1}}{\vec{p} \cdot \vec{x}}$ $\left(\frac{\text { compensated cross price elasticity }}{\text { expenditure share }}\right)$
2) $\mathcal{E}\left(x_{1}^{c}, p_{1}\right)=-\left(1-k_{1}\right) \sigma$

Prop. 2.2-5

ES \& Compensated Price Elasticity

- On indifference curve, $U\left(x_{1}^{c}(p, \bar{U}), x_{2}^{c}(p, \bar{U})\right)=\bar{U}$
- Hence, $\frac{\partial U}{\partial x_{1}} \frac{\partial x_{1}^{c}}{\partial p_{1}}+\frac{\partial U}{\partial x_{2}} \frac{\partial x_{2}^{c}}{\partial p_{1}}=0$
- By FOC, $\frac{p_{1}}{\partial U}=\frac{p_{2}}{\partial x_{1}} \Rightarrow \underline{\underline{p_{1} \frac{\partial x_{1}^{c}}{\partial p_{1}}+p_{2} \frac{\partial x_{2}^{c}}{\partial p_{1}}}=0}$

$$
\begin{aligned}
\mathcal{E}\left(x_{1}^{c}, p_{1}\right) & =\frac{p_{1}}{x_{1}^{c}} \frac{\partial x_{1}^{c}}{\partial p_{1}}=-\frac{p_{2}}{x_{1}^{c}} \frac{\partial x_{2}^{c}}{\partial p_{1}} \quad k_{j}=\frac{p_{j} x_{j}^{c}}{\vec{p} \cdot \vec{x}^{c}} \\
& =-\left(\frac{p_{2} x_{2}^{c}}{p_{1} x_{1}^{c}}\right) \frac{p_{1}}{x_{2}^{c}} \frac{\partial x_{2}^{c}}{\partial p_{1}}=-\frac{k_{2}}{k_{1}} \mathcal{E}\left(x_{2}^{c}, p_{1}\right)
\end{aligned}
$$

Prop. 2.2-5

ES \& Compensated Price Elasticity

- Since $\mathcal{E}\left(x_{1}^{c}, p_{1}\right)=-\frac{k_{2}}{k_{1}} \mathcal{E}\left(x_{2}^{c}, p_{1}\right)$
- Lemma 2.2-4 becomes:

$$
\sigma=\mathcal{E}\left(x_{2}^{c}, p_{1}\right)-\mathcal{E}\left(x_{1}^{c}, p_{1}\right)
$$

$$
=\mathcal{E}\left(x_{2}^{c}, p_{1}\right) \cdot\left(1+\frac{k_{2}}{k_{1}}\right)=\frac{\mathcal{E}\left(x_{2}^{c}, p_{1}\right)}{k_{1}} \quad \ldots(1)
$$

$$
=\mathcal{E}\left(x_{1}^{c}, p_{1}\right) \cdot\left(-\frac{k_{1}}{k_{2}}\right) \cdot \frac{1}{k_{1}}=-\frac{\mathcal{E}\left(x_{1}^{c}, p_{1}\right)}{k_{2}}
$$

- Hence, $\mathcal{E}\left(x_{1}^{c}, p_{1}\right)=-k_{2} \sigma=-\left(1-k_{1}\right) \sigma \ldots(2)$

Compensated own price elasticity bounded/approx. by ES!

Elasticity of

Substitution (Compensated Demand)

- Verify that $\sigma=\theta$ for CES:
- Since $x_{1}=\left(\frac{\alpha_{1}}{\alpha_{2}} \frac{p_{2}}{p_{1}}\right)^{\theta} \cdot x_{2} \Rightarrow \frac{x_{2}}{x_{1}}=\left(\frac{\alpha_{2}}{\alpha_{1}} \cdot \frac{p_{1}}{p_{2}}\right)^{\theta}$

$$
\begin{aligned}
& \Rightarrow \ln \left(\frac{x_{2}^{c}}{x_{1}^{c}}\right)=\theta\left(\ln p_{1}-\ln p_{2}+\ln \alpha_{2}-\ln \alpha_{1}\right) \\
& \Rightarrow \sigma=\mathcal{E}\left(\frac{x_{2}^{c}}{x_{1}^{c}}, p_{1}\right)=p_{1} \cdot \frac{\partial}{\partial p_{1}}\left[\ln \left(\frac{x_{2}^{c}}{x_{1}^{c}}\right)\right] \\
& \quad=p_{1} \cdot \frac{\theta}{p_{1}}=\theta
\end{aligned}
$$

Summary for Elasticity of Substitution

$$
\begin{aligned}
& \text { - 1. } \sigma=\mathcal{E}\left(\frac{x_{2}^{c}}{x_{1}^{c}}, p_{1}\right) \\
& \text { - 2. }=\frac{\mathcal{E}\left(x_{2}^{c}, p_{1}\right)}{k_{1}} \\
& \begin{aligned}
&=-\frac{\mathcal{E}\left(x_{1}^{c}, p_{1}\right)}{1-k_{1}} \\
& p_{1} x_{1}
\end{aligned} \vec{p}^{0} \cdot \vec{x} \left\lvert\, \begin{array}{l}
\vec{p}^{0} \cdot \vec{x}^{0} \underbrace{\vec{x}^{c}}_{\vec{p}^{1} \cdot \vec{x}=\vec{p}^{1} \cdot \vec{x}^{1}} \underbrace{\vec{p}^{2}}
\end{array}\right. \\
& k_{1}=\frac{p_{1} x_{1}}{\vec{p} \cdot \vec{x}}
\end{aligned}
$$

- 3. $\sigma=\theta$ for CES...

Total Price Effect

$=$ Income Effect + Substitution Effect

- For $M(\vec{p}, \bar{U}) \& x_{1}(\vec{p}, I)$
- Compensated Demand:

$$
\begin{gathered}
x_{1}^{c}(\vec{p}, \bar{U})=x_{1}(\vec{p}, M(\vec{p}, \bar{U})) \\
\frac{\partial x_{1}^{c}}{\partial p_{1}}=\frac{\partial x_{1}}{\partial p_{1}}+\frac{\partial x_{1}}{\partial I} \cdot \underline{\frac{\partial M}{\partial p_{1}}} \\
\left(\frac{\partial M}{\partial p_{1}}=x_{1}\right)
\end{gathered}
$$

$$
U(\vec{x}) \geq \bar{U}
$$

- Slutsky Equation: $\underbrace{\frac{\partial x_{1}}{\partial p_{1}}}_{A \rightarrow B}=\underbrace{\frac{\partial x_{1}^{c}}{\partial p_{1}}}_{A \rightarrow C}-\underbrace{x_{1} \cdot \frac{\partial x_{1}}{\partial I}}_{C \rightarrow B} x_{1}$

Prop. 2.2-6

Decomposition of Own Price Elasticity

- Slutsky Equation: $\frac{\partial x_{1}}{\partial p_{1}}=\frac{\partial x_{1}^{c}}{\partial p_{1}}-x_{1} \cdot \frac{\partial x_{1}}{\partial I}$
- Elasticity Version:

$$
\frac{p_{1}}{x_{1}} \frac{\partial x_{1}}{\partial p_{1}}=\frac{p_{1}}{x_{1}} \frac{\partial x_{1}^{c}}{\partial p_{1}}-\frac{p_{1} x_{1}}{I} \frac{I}{x_{1}} \cdot \frac{\partial x_{1}}{\partial I}
$$

- Or, $\begin{aligned} \underline{\mathcal{E}\left(x_{1}, p_{1}\right)} & =\mathcal{E (x _ { 1 } ^ { c } , p _ { 1 })}-\underline{\underline{k_{1} \cdot \mathcal{E}\left(x_{1}, I\right)}} \\ & =\underline{\underline{-\left(1-k_{1}\right)} \sigma}-\underline{\underline{k_{1} \cdot \mathcal{E}\left(x_{1}, I\right)}}\end{aligned}$

Substitution Effect Income Effect

- Own price elasticity $=$ weighted average of elasticity of substitution and income elasticity

Summary of 2.2

- Consumer Problem: Maximize Utility
- Income Effect
- Dual Problem: Minimize Expenditure
- Substitution Effect:
- =Compensated Price Effect
- Elasticity of Substitution
- Total Price Effect:
- = Compensated Price Effect + Income Effect
- Homework: Exercise 2.2-4 (Optional: 2.2-5)

In-Class Homework: Exercise 2.2-2

- Show that the price effect on compensated demand is

$$
\frac{\partial M}{\partial p_{j}}(\vec{p}, \bar{U})=x_{j}^{c}(\vec{p}, \bar{U})
$$

- Hint: Convert expenditure minimization into a maximization problem, write down the Lagrangian and use the Envelope Theorem...

In-Class Homework: Exercise 2.2-3

- [Elasticity of Substitution]
a) Show that $\mathcal{E}(y(x), z(x))=\frac{\frac{d}{d x} \ln y}{\frac{d}{d x} \ln z}$.
b) Use this to show that $\mathcal{E}\left(\frac{1}{y}, \frac{1}{x}\right)=\mathcal{E}(y, x)$ and that $\mathcal{E}\left(\frac{y_{2}}{y_{1}}, x\right)=\mathcal{E}\left(y_{2}, x\right)-\mathcal{E}\left(y_{1}, x\right)$
c) Use these results to prove Lemma 2.2-4.

In-Class Homework: Exercise 2.2-6

- [Parallel Income Expansion Paths]
- A consumer faces price vector p , has income and utility function $U(\vec{x})=-\alpha_{1} e^{-A x_{1}}-\alpha_{2} e^{-A x_{2}}$
a) Show that her optimal consumption bundle satisfies the following: $x_{2}-x_{1}=a+b \ln \frac{p_{1}}{p_{2}}$ p_{2}
b) Depict her Income Expansion Paths.

