Shadow Prices

Joseph Tao-yi Wang 2019/9/11

(Lecture 2, Micro Theory I)

A Peak-Load Pricing Problem

- Consider the problem faced by Chunghwa Telecom (CHT):
- By building base stations, CHT can provide cell phone service to a certain region
 - An establish network can provide service both in the day and during the night
 - <u>Marginal cost is low</u> (zero?!); <u>setup cost is huge</u>
- Marketing research reveal unbalanced demand
 Day peak; Night off-peak (or vice versa?)

A Peak-Load Pricing Problem

- If you are the CEO of CHT, how would you price usage of your service?
 - Price day and night the same (or different)?
- Economic intuition should tell you to set off-peak prices lower than peak prices
 – But how low?
- All new 4G services (LTE) are facing a similar problem now...

More on Peak-Load Pricing

- Other similar problems include:
 - How should Taipower price electricity in the summer and winter?
 - How should a theme park set its ticket prices for weekday and weekends?
- Even if demand estimations are available, you will still need to do some math to find optimal prices...
 - Either to maximize profit or social welfare

A Peak-Load Pricing Problem

- Back to CHT:
- Capacity constraints:

$$q_j \le q_0, j = 1, ..., n$$

- CHT's Cost function: $C(q_0, \vec{q}) = F + c_0 q_0 + \vec{c} \cdot \vec{q}$
- Demand for cell phone service: $p_j(\vec{q})$
- Total Revenue: $R(\vec{q}) = \vec{p} \cdot \vec{q}$

A Peak-Load Pricing Problem

• The monopolist profit maximization problem:

 $\max_{q_0,\vec{q}} \left\{ R(\vec{q}) - F - c_0 q_0 - \vec{c} \cdot \vec{q} \, | q_0 - q_j \ge 0, j = 1, ..., n \right\}$

- How do you solve this problem?
- When does FOC guarantee a solution?
- What does the Lagrange multiplier mean?
- What should you do when FOC "fails"?

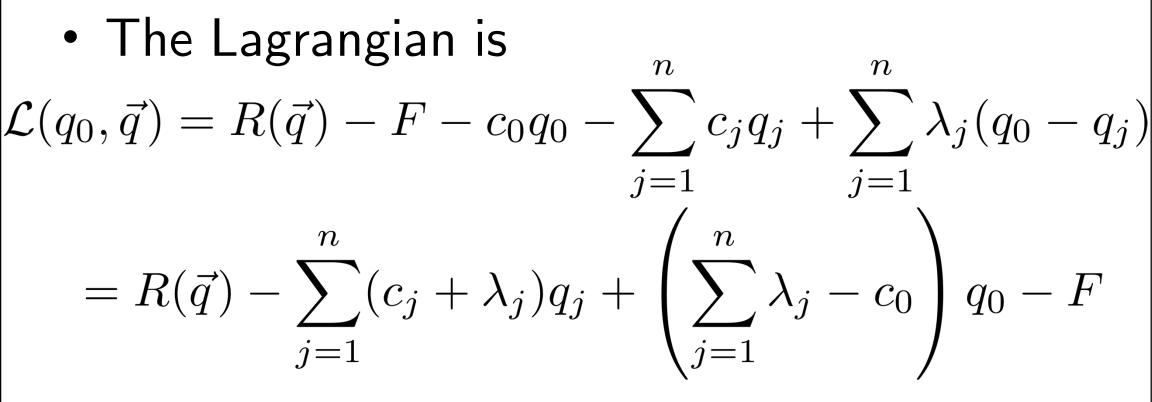
Need: Lagrange Multiplier Method

- 1. Write Constraints as $h_i(\vec{x}) \ge 0, i = 1, ..., m$ $\vec{h}(\vec{x}) = (h_1(\vec{x}), ..., h_m(\vec{x}))$
- 2. Shadow prices $\vec{\lambda} = (\lambda_1, ..., \lambda_m)$
- Lagrangian $\mathcal{L}(\vec{x}, \vec{\lambda}) = f(\vec{x}) + \vec{\lambda} \cdot \vec{h}(\vec{x})$
- FOC: $\frac{\partial \mathcal{L}}{\partial x_j} = \frac{\partial f}{\partial x_j} + \vec{\lambda} \cdot \frac{\partial \vec{h}}{\partial x_j} \le 0, \text{ with equality if } \overline{x}_j > 0.$

$$\frac{\partial \mathcal{L}}{\partial \lambda_i} = h_i(\vec{\overline{x}}) \ge 0, \text{ with equality if } \lambda_i > 0.$$

• The monopolist profit maximization problem:

 $\max_{q_0,\vec{q}} \left\{ R(\vec{q}) - F - c_0 q_0 - \vec{c} \cdot \vec{q} \, \big| q_0 - q_j \ge 0, j = 1, ..., n \right\}$



• FOC:

$$\frac{\partial \mathcal{L}}{\partial q_j} = MR_j - c_j - \lambda_j \le 0, \text{ with equality if } q_j > 0.$$

$$\frac{\partial \mathcal{L}}{\partial q_0} = \sum_{j=1}^n \lambda_j - c_0 \le 0, \text{ with equality if } q_0 > 0.$$

$$\frac{\partial \mathcal{L}}{\partial \lambda_j} = q_0 - q_j \ge 0, \text{ with equality if } \lambda_j > 0.$$

 \mathbf{O}

• For positive production, FOC becomes:

$$\frac{\partial \mathcal{L}}{\partial q_j} = MR_j - c_j - \lambda_j = 0, \text{ since } q_j > 0.$$

$$\frac{\partial \mathcal{L}}{\partial q_0} = \sum_{j=1}^n \lambda_j - c_0 = 0, \text{ since } q_0 > 0.$$

 $\frac{\partial \mathcal{L}}{\partial \lambda_j} = q_0 - q_j \ge 0, \text{ with equality if } \lambda_j > 0.$

• Meaning of FOC: $\frac{\partial \mathcal{L}}{\partial q_j} = MR_j - c_j - \lambda_j = 0, \text{ since } q_j > 0.$ Since $c_0 > 0$, at least 1 $= \sum_{i=1}^{j} \lambda_j - c_0 = 0, \text{ since } q_0 > 0.$ $rac{\partial \mathcal{L}}{\partial q_0}$ shadow price > 0! $\frac{\partial \mathcal{L}}{\partial \lambda_j} = q_0 - q_j \ge 0, \text{ with equality if } \lambda_j > 0.$

 $\partial \lambda$

• Meaning of FOC:

$$\frac{\partial \mathcal{L}}{\partial q_j} = MR_j - c_j - \lambda_j = 0, \quad \begin{array}{l} \text{Hit capacity} \\ \text{at positive} \\ \text{shadow price!} \end{array}$$

$$\frac{\partial \mathcal{L}}{\partial q_0} = \sum_{j=1}^n \lambda_j - c_0 = 0, \quad \begin{array}{l} \text{Off-peak shadow price} = 0 \\ \end{array}$$

$$\frac{d}{d_j} = q_0 - q_j \ge 0$$
, with equality if $\lambda_j > 0$.

• Meaning of FCC:

$$\frac{\partial \mathcal{L}}{\partial q_j} = MR_j - c_j - \lambda_j = 0, MR_i(\overline{q}) = c_i + \lambda_i$$

$$\frac{\partial \mathcal{L}}{\partial q_0} = \sum_{j=1}^n \lambda_j - c_0 = 0, \text{Peak periods share capacity} \\ \text{cost via shadow price}$$

Off-peak:
MR=MC!
$$MR_j(\overline{q}) = c_j$$
 equality if $\lambda_j > 0$.

- Economic Insight of FOC:
- Marginal decision of the manager: MR = MC
- Off-peak: MR = operating MC
 - Since didn't hit capacity
- Peak: Need to increase capacity
 - MR of all peak periods =

cost of additional capacity

+ operating MC of all peak periods

• What's the theory behind this?

Constrained Optimization: Economic Intuition

• Single Constraint Problem:

$$\max_{\vec{x}} \left\{ f(\vec{x}) \, \middle| \, \vec{x} \ge 0, \, b - g(\vec{x}) \ge 0 \right\}$$

- Interpretation: a profit maximizing firm
 - Produce non-negative output $\vec{x} \geq 0$
 - Subject to resource constraint $g(\vec{x}) \leq b$
- Example: linear constraint $\vec{a} \cdot \vec{x} = \sum_{j=1}^{n} a_j x_j \leq b$

n

• Each unit of x_j requires a_j units of resource b.

Constrained Optimization: Economic Intuition

• Single Constraint Problem:

$$\max_{\vec{x}} \left\{ f(\vec{x}) \, \middle| \, \vec{x} \ge 0, \, b - g(\vec{x}) \ge 0 \right\}$$

- Interpretation: a utility maximizing consumer
 - Consume non-negative input $\vec{x} \ge 0$
 - Subject to budget constraint $g(\vec{x}) \leq b$
- Example: linear constraint $\vec{a} \cdot \vec{x} = \sum_{i=1}^{n} a_i x_i \leq b$

n

• Each unit of x_j requires a_j units of currency b.

Constrained Optimization: Economic Intuition

- Suppose \$\vec{x}^*\$ solves the problem
 If one increases \$x_j\$, profit changes by \$\frac{\partial f}{\partial x_j}\$
- Additional resources needed: $\frac{\partial g}{\partial x_i}$
- Cost of additional resources: λ ∂g/∂x_j

 (Market/shadow price is λ)
 Net gain of increasing x_j is ∂f/∂x_j(x) λ ∂g/∂x_j(x)

Necessary Conditions for x_{j}^{*}

- Firm will increase x_j^* if marginal net gain > 0- i.e. If x_j^* is optimal $\Rightarrow \frac{\partial f}{\partial x_j}(\vec{x}^*) - \lambda \frac{\partial g}{\partial x_j}(\vec{x}^*) \le 0$
- Firm will decrease x^{*}_j if marginal net gain < 0 (unless x^{*}_j is already zero)
 - -i.e. $x_j^* > 0 \Rightarrow \frac{\partial f}{\partial x_j}(\vec{x}^*) \lambda \frac{\partial g}{\partial x_j}(\vec{x}^*) \ge 0$

$$\frac{\partial f}{\partial x_j}(\vec{x}^*) - \lambda \frac{\partial g}{\partial x_j}(\vec{x}^*) \le 0, \text{ with equality if } x_j^* > 0.$$

Necessary Conditions for x_{j}^{*}

If x_j^{*} is strictly positive, marginal net gain = 0

i.e. x_j^{*} > 0 ⇒ ∂f/∂x_j(x̄*) - λ ∂g/∂x_j(x̄*) = 0

If x_j^{*} is zero, marginal net gain ≤ 0

i.e. x_j^{*} = 0 ⇒ ∂f/∂x_j(x̄*) - λ ∂g/∂x_j(x̄*) ≤ 0

$$\frac{\partial f}{\partial x_j}(\vec{x}^*) - \lambda \frac{\partial g}{\partial x_j}(\vec{x}^*) \le 0, \text{ with equality if } x_j^* > 0.$$

Necessary Conditions for x_{i}^{*}

- If resource doesn't bind, opportunity $\mathrm{cost}\,\lambda=0$

-i.e.
$$b - g(\vec{x}^*) > 0 \Rightarrow \lambda = 0$$

• Or, in other words,

$$b - g(\vec{x}^*) \ge 0$$
 with equality if $\lambda > 0$.

– This is logically equivalent to the first statement.

Lagrange Multiplier Method

- 1. Write constraint as $h(\vec{x}) \ge 0$ $\tilde{h}(\vec{x}) \le 0$
- 2. Lagrange multiplier = shadow price λ
- Lagrangian $\mathcal{L}(\vec{x}, \lambda) = f(\vec{x}) + \lambda \cdot h(\vec{x})$
- FOC: $\mathcal{L}(\vec{x},\lambda) = f(\vec{x}) \lambda \cdot \tilde{h}(\vec{x})$

 $\frac{\partial \mathcal{L}}{\partial x_j} = \frac{\partial f}{\partial x_j} + \lambda \cdot \frac{\partial h}{\partial x_j} \le 0, \text{ with equality if } x_j^* > 0.$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = h(\vec{x}^*) \ge 0, \text{ with equality if } \lambda > 0.$$

Example 1

• A consumer problem: $\max_{\vec{x}} \left\{ f(\vec{x}) = \ln(1 + x_1)(1 + x_2) \right\}$ $x_{2'}$ $\vec{x} \ge 0, h(\vec{x}) = 2 - x_1 - x_2 \ge 0$ $\vec{x}^0 = (1, 1)$ $f(\vec{x}) = f(\vec{x}^0)$

Example 1

- Maximum at $\vec{x}^* = (1, 1)$
- Lagrangian:

 $\mathcal{L}(\vec{x},\lambda) = \ln(1+x_1) + \ln(1+x_2) + \lambda(2-x_1-x_2)$

• FOC:

$$\frac{\partial \mathcal{L}}{\partial x_j} = \frac{1}{1+x_j} - \lambda \le 0, \text{ with equality if } x_j^* > 0.$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 2 - x_1 - x_2 \ge 0, \text{ with equality if } \lambda > 0.$$

Lagrange Multiplier w/ Multiple Constraints

- 1. Write Constraints as $h_i(\vec{x}) \ge 0, i = 1, \cdots, m$ $\vec{h}(\vec{x}) = (h_1(\vec{x}), \cdots, h_m(\vec{x}))$
- 2. Shadow prices $\vec{\lambda} = (\lambda_1, \cdots, \lambda_m)$
- Lagrangian $\mathcal{L}(\vec{x}, \vec{\lambda}) = f(\vec{x}) + \vec{\lambda} \cdot \vec{h}(\vec{x})$

• FOC:

 $\frac{\partial \mathcal{L}}{\partial x_j} = \frac{\partial f}{\partial x_j} + \vec{\lambda} \cdot \frac{\partial \vec{h}}{\partial x_j} \le 0, \text{ with equality if } x_j^* > 0.$ $\frac{\partial \mathcal{L}}{\partial \lambda_i} = h_i(\vec{x}^*) \ge 0, \text{ with equality if } \lambda_i > 0.$

When Intuition Breaks Down? Example 2

• A "new" problem:

$$\max_{\vec{x}} \left\{ f(\vec{x}) = \ln(1+x_1)(1+x_2) \right|$$

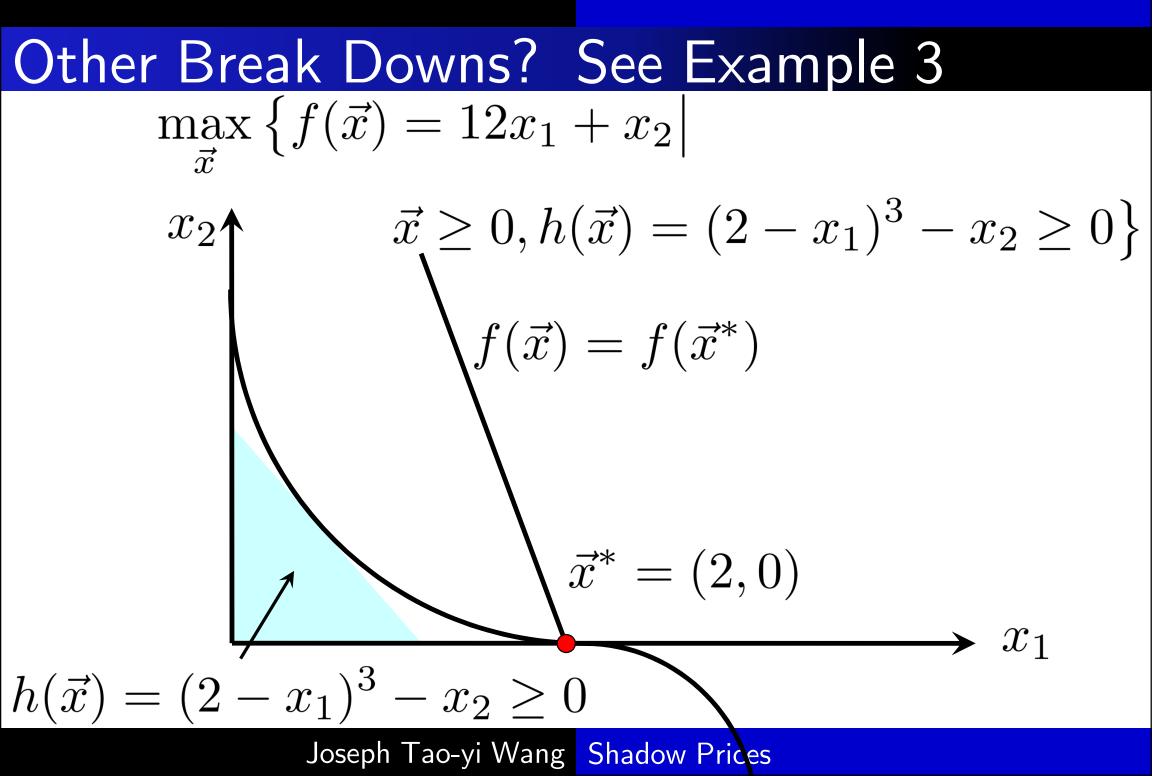
$$x_2 \qquad \vec{x} \ge 0, h(\vec{x}) = (2-x_1-x_2)^3 \ge 0$$

$$\vec{x}^0 = (1,1) \qquad f(\vec{x}) = f(\vec{x}^0) \qquad (2-x_1-x_2)^3 \ge 0 \qquad x_1$$

When Intuition Breaks Down? Example 2

- $\mathcal{L}(\vec{x},\lambda) = \ln(1+x_1) + \ln(1+x_2) + \lambda(2-x_1-x_2)^3$
- FOC is violated at $\vec{x}^* = (1,1)!$ $\frac{\partial \mathcal{L}}{\partial x_j} = \frac{1}{1+x_j} - 3\lambda(2-x_1-x_2)^2 = \frac{1}{2}$
- How could this be?
- Because "linearization" fails if gradient = 0... $\frac{\partial h}{\partial \vec{x}} = \vec{0} \text{ at } \vec{x} = (1, 1)$

$$\overline{h}(\vec{x}) = h(\vec{x}^*) + \frac{\partial h}{\partial \vec{x}}(\vec{x}^*) \cdot (\vec{x} - \vec{x}^*) = h(1, 1) = 0$$



Other Break Downs? See Example 3

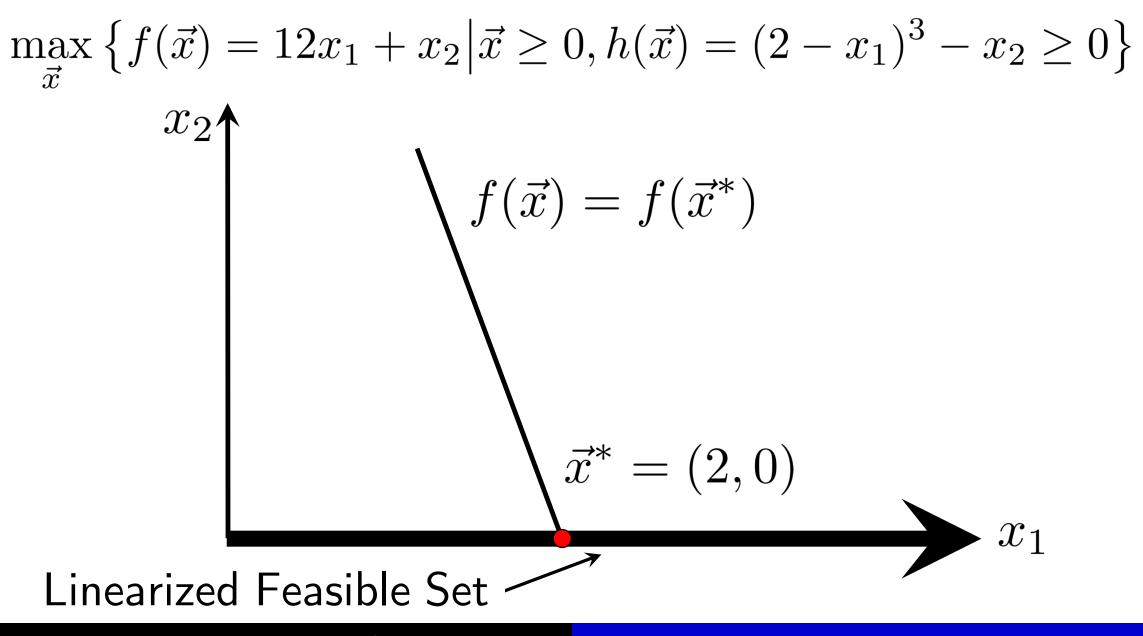
- Lagrangian $\mathcal{L}(\vec{x},\lambda) = 12x_1 + x_2 + \lambda \left[(2-x_1)^3 x_2 \right]$
- FOC is violated! $\frac{\partial \mathcal{L}}{\partial x_1} = 12 - 3\lambda(2 - \overline{x}_1)^2 = 12 \text{ at } \vec{x}^* = (2, 0)$
- What's the problem this time?
- Not the gradient... $\frac{\partial h}{\partial \vec{x}}(\vec{x}^*) = (0, -1)$
- But "Linearized feasible set" has no interior!

Other Break Downs? See Example 3

- What's the problem this time?

- Gradient is $\frac{\partial h}{\partial \vec{x}}(\vec{x}^*) = (0, -1)$
- Linear approximation of the constraint is: $\frac{\partial h}{\partial \vec{x}}(\vec{x}^*) \cdot (\vec{x} - \vec{x}^*)$ $= \frac{\partial h}{\partial x_1}(\vec{x}^*) \cdot (x_1 - 2) + \frac{\partial h}{\partial x_2}(\vec{x}^*) \cdot x_2$
 - $= -x_2 \ge 0 \implies x_2 = 0$

Other Break Downs? See Example 3



Linearized Feasible Set X

- Set of constraints binding at \vec{x}^* : $h_i(\vec{x}^*) = 0$ - For $i \in B = \{i | i = 1, ..., m, h_i(\vec{x}^*) = 0\}$
- Replace binding constraints by linear approx. $\overline{h}_i(\vec{x}) = \underline{h}_i(\vec{x}^*) + \frac{\partial h_i}{\partial \vec{x}}(\vec{x}^*) \cdot (\vec{x} - \vec{x}^*) \ge 0$
- These constraints also bind, and $\frac{\partial h_i}{\partial \vec{x}}(\vec{x}^*) \cdot (\vec{x} - \vec{x}^*) \ge 0, i \in B$

-since
$$\underline{h_i(\vec{x}^*)} = 0$$

Linearized Feasible Set X

- Note: These are "true" constraints if gradient $\frac{\partial h_i}{\partial \vec{x}}(\vec{x}^*) \neq \vec{0}$
- \overline{X} = Linearized Feasible Set
 - = Set of non-negative vectors satisfying $\frac{\partial h_i}{\partial \vec{x}}(\vec{x}^*) \cdot (\vec{x} - \vec{x}^*) \ge 0, i \in B$

Constraint Qualifications

• Set of feasible vectors:

 $X = \left\{ \vec{x} \, \middle| \, \vec{x} \ge 0, h_i(\vec{x}) \ge 0 \right\}$

- Constraint Qualifications hold at $\vec{x}^* \in \overline{X}$ if
- (i) Binding constraints have non-zero gradients $\frac{\partial h_i}{\partial \vec{x}}(\vec{x}^*) \neq \vec{0}$
- (ii) The linearized feasible set \overline{X} at \vec{x}^* has a nonempty interior.
 - CQ guarantees FOC to be necessary conditions

Proposition 1.2-1 Kuhn-Tucker Conditions

- Suppose \vec{x}^* solves $\max_{\vec{x}} \left\{ f(\vec{x}) \middle| \vec{x} \in X \right\}, X = \text{feasible set}$ If the constraint qualifications hold at \vec{x}^*
- Then there exists shadow price vector $\vec{\lambda} > 0$
- Such that (for j=1,...,n, i=1,...,m) $\frac{\partial \mathcal{L}}{\partial x_j}(\vec{x}^*, \vec{\lambda}) \le 0, \text{ with equality if } x_j^* > 0.$ $\frac{\partial \mathcal{L}}{\partial \lambda_i} = (\vec{x}^*, \vec{\lambda}) \ge 0, \text{ with equality if } \lambda_i > 0.$

Lemma 1.2-2 [Special Case] Quasi-Concave

- If for each binding constraint at \vec{x}^* , h_i is quasi-concave and $\frac{\partial h_i}{\partial \vec{x}}(\vec{x}^*) \neq \vec{0}$
- Then, $X \subset \overline{X}$

– Tangent Hyperplanes

- = Supporting Hyperplanes!

- Hence, if X has a non-empty interior, then so does the linearized set \overline{X}
 - Thus we have...

Prop 1.2-3 [Quasi-Concave] Constraint Qualif.

- Suppose feasible set has non-empty interior $X = \left\{ \vec{x} | \vec{x} \ge 0, h_i(\vec{x}) \ge 0 \right\}$
- Constraint Qualifications hold at $\vec{x}^* \in \overline{X}$ if

- Binding constraints h_i are quasi-concave,
- And the gradient $\frac{\partial h_i}{\partial \vec{x}}(\vec{x}) \neq \vec{0}$

Proposition 1.2-4 Sufficient Conditions

- \vec{x}^* solves $\max_{\vec{x}} \left\{ f(\vec{x}) \middle| \vec{x} \ge 0, h_i(\vec{x}) \ge 0, i = 1, ..., m \right\}$
- If $f, h_i, i = 1, ..., m$ are quasi-concave,
- The Kuhn-Tucker conditions hold at \vec{x}^* ,
- Binding constraints have $\frac{\partial h_i}{\partial \vec{x}}(\vec{x}^*) \neq \vec{0}$
- And $\frac{\partial f}{\partial \vec{x}}(\vec{x}^*) \neq \vec{0}$.

Summary of 1.2

- Consumer = Producer
- Lagrange multiplier = Shadow prices
- FOC = "MR MC = 0": Kuhn-Tucker
- When does this intuition fail?
 - Gradient = 0
 - Linearized feasible set has no interior
- →Constraint Qualification: when it flies...
 CQ for quasi-concave constraints
- Sufficient Conditions (Proof in Section 1.4)

Summary of 1.2

- Peak-Load Pricing requires Kuhn-Tucker
- MR= "effective" MC
- Off-peak shadow price (for capacity) = 0
- Peak periods share additional capacity cost
- Can you think of real world situations that requires something like peak-load pricing?
 After you start your new job making \$\$\$\$...
- Homework: Exercise 1.2-2 (Optional 1.2-3)