# Supporting Prices and Convexity

#### Joseph Tao-yi Wang 2019/9/10 (Lecture 1, Micro Theory I)

## **Overview of Chapter 1**

- Theory of Constrained Maximization

   Why should we care about this?
- What is Economics?
- Economics is the study of how society manages its scarce resources (Mankiw, Ch.1)

 "Economics is the science which studies human behavior as a relationship between given ends and scarce means which have alternative uses." (Lionel Robbins, 1932)

## **Overview of Chapter 1**

- Other Historical Accounts:
  - Economics is the "study of how societies use scarce resources to produce valuable commodities and distribute them among different people." (Paul A. Samuelson, 1948)
- I think Economics is the study of institutions
   & human behavior (reaction to institutions)
- Either way, constrained maximization is key!

## Tools Introduced in Chapter 1

- 1. Supporting Hyperplanes (and Convexity)
- 2. First Order Conditions (Kuhn-Tucker)
- 3. Envelope Theorem
- But why do I need to know the math?
- When does Coase conjecture work?
  - It depends—Math makes these predictions precise
- What happens if you ignore the conditions required for theory to work? (Recall 2008/09!)

### **Publication Reward Problem**

- Example: How should NTU reward its professors to publish journal articles?
  - Should NTU pay, say, NT\$300,000 per article published in Science or Nature?
- Well, it depends...
- Peek the answer ahead:
  - -Yes, if the production set is convex.
  - No, if, for example, there is initial increasing returns to scale.

## Supporting Prices

- More generally,
- can prices and profit maximization provide appropriate incentives to induce all possible efficient production plans?
  - Is there a price vector that supports each efficient production plan?
- (Yes, but when?)
- Need some definitions first...

### **Production Plan and Production Set**

- A plant can:
- produce n outputs  $\vec{q} = (q_1, \cdots, q_n)$
- using up to m inputs  $\vec{z} = (z_1, \cdots, z_m)$
- Production Plan  $(\vec{z}, \vec{q})$
- Production Set  $\mathcal{Y} \subset \mathbb{R}^{m+n}_+$ = Set of all Feasible Production Plan
- Production Vector (treat inputs as negative)

$$\vec{y} = (-\vec{z}, \vec{q}) = (-z_1, \cdots, -z_m, q_1, \cdots, q_n)$$

Motivation Baseline Games Robustness Games Behavioral Theory

#### Production Set and Profits

- Production vector
- $\vec{y} = (y_1, \cdots, y_{m+n}) = (-z_1, \cdots, -z_m, q_1, \cdots, q_n)$
- Production Set  $\mathcal{Y} \subset \mathbb{R}^{m+n}$ = Set of Feasible Production Plan
- Price vector  $\vec{p} = (p_1, \cdots, p_{m+n})$



Motivation Baseline Games Robustness Games Behavioral Theory

## EX: Production Function & Production Set

- A professor has 25 units of "brain-power"
- Allocates  $z_1$  units to produce TSSCI papers
- Produce  $q_1 = 4\sqrt{z_1}$  (Production Function)
- Production Set

$$\mathcal{Y}_1 = \left\{ (z_1, q_1) \middle| z_1 \ge 0, q_1 \le 4\sqrt{z_1} \right\}$$

- Treating inputs as negatives,  $\vec{y} = (-\vec{z}, \vec{q})$
- Production Set is  $\mathcal{V}_{i} = \int (a_{i}, a_{i}) = 16a_{i} = 16a_{i}$

$$\mathcal{V}_1 = \left\{ (y_1, y_2) \middle| -16y_1 - y_2^2 \ge 0 \right\}$$

## **Production** Efficiency

- A production plan  $\vec{y}$  is wasteful if another plan in  $\mathcal{Y}$  achieves larger output with smaller input
- $\vec{\overline{y}}$  is production efficient (=non-wasteful) if

There is no 
$$ec{y} \in \mathcal{Y}$$
 such that  $ec{y} > ec{ec{y}}$ 

– Note: 
$$\vec{y} \ge \vec{\overline{y}}$$
 if  $y_j \ge \overline{y}_j$  for all  $j$ 

 $\vec{y} > \vec{\overline{y}}$  if inequality is strict for <u>some</u> *j* 

 $\vec{y} \gg \vec{\overline{y}}$  if inequality is strict for <u>all</u> *j* 

## **Can Prices Support Efficient Production?**

- A professor has 25 units of "brain-power"
- Allocates  $y_1$  units to produce TSSCI papers
- Price of brain-power is  $p_1$
- Production Set  $\mathcal{Y}_1$
- Can we induce production target  $y_2^0$ ?
- With piece-rate prize  $p_2$ ?

#### **Can Prices Support Efficient Production?**



#### Too High? Let's Lower the Transfer Price...



#### Will this Always Work?



## What Made It Fail?

- The last production set was NOT convex.
- Production Set  $\mathcal{Y}_1$  is convex if for any  $\vec{y}^0, \vec{y}^1$
- Its convex combination (for  $0 < \lambda < 1$ )

 $\vec{y}^{\lambda} = (1 - \lambda)\vec{y}^0 + \lambda\vec{y}^1 \in \mathcal{Y}_1$ 

- (is also in the production set)

 Is it true that we can use prices to guide production decisions as long as production sets are convex?

### Supporting Hyperplane Theorem

Proposition 1.1-1 (Supporting Hyperplane)

- Suppose  $\mathcal{Y} \subset \mathbb{R}^n$  is non-empty and convex,
- And  $\vec{y}^0$  lies on the boundary of  $\gamma$
- Then, there exists  $\vec{p} \neq 0$  such that
- i. For all  $\vec{y} \in \mathcal{Y}$ ,  $\vec{p} \cdot \vec{y} \leq \vec{p} \cdot \vec{y}^0$
- ii. For all  $\vec{y} \in \operatorname{int} \mathcal{Y}, \ \vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$

- Can we obtain part (ii)???

• Proof: For the general case, see Appendix C.

## Supporting Hyperplane Thm (Special Case)

- Consider special case where
- Production set  $\mathcal{Y}$  is the upper contour set  $\mathcal{Y} = \{\vec{y}|g(\vec{y}) \ge g(\vec{y}^0)\}, g \text{ is differentiable}$
- Suppose the gradient vector is non-zero at  $\vec{y}^0$
- The linear approximation of g at  $\vec{y}^0$  is:  $\underline{\overline{g}(\vec{y})} = g(\vec{y}^0) + \frac{\partial g}{\partial \vec{y}}(\vec{y}^0) \cdot (\vec{y} - \vec{y}^0)$
- If  $\mathcal Y$  is convex, it lies in upper contour set of  $\underline{\overline{g}}$





### Special Case of Supporting Hyperplane Thm

- Lemma 1.1-2
- If g is differentiable and  $\mathcal{Y}=\left\{\vec{y}|g(\vec{y})\geq g(\vec{y}^0)\right\}$  is convex, then

$$\vec{y} \in \mathcal{Y} \Rightarrow \frac{\partial g}{\partial \vec{y}}(\vec{y}^0) \cdot (\vec{y} - \vec{y}^0) \ge 0$$

- This tells us how to calculate the supporting prices (under this special case):
- For boundary point  $\vec{y}^0$ , choose  $\vec{p} = -\frac{\partial g}{\partial \vec{x}}(\vec{y}^0)$

#### From Lemma to Supporting Hyperplane Thm

- If g is differentiable and  $\mathcal{Y} = \{\vec{y}|g(\vec{y}) \ge g(\vec{y}^0)\}$ is convex, then set  $\vec{p} = -\frac{\partial g}{\partial \vec{y}}(\vec{y}^0)$
- By lemma:  $\vec{y} \in \mathcal{Y} \implies -\vec{p} \cdot (\vec{y} \vec{y}^0) \ge 0$  $\implies \vec{p} \cdot \vec{y} \le \vec{p} \cdot \vec{y}^0$
- This gives us part (i) of S. H. T.
   What about part (ii)? See Prop. 1-1.3...

### Supporting Hyperplane Theorem

Proposition 1.1-1 (Supporting Hyperplane)

- Suppose  $\mathcal{Y} \subset \mathbb{R}^n$  is non-empty and convex,
- And  $\vec{y}^0$  lies on the boundary of  $\gamma$
- Then, there exists  $\vec{p} \neq 0$  such that
- i. For all  $\vec{y} \in \mathcal{Y}$ ,  $\vec{p} \cdot \vec{y} \leq \vec{p} \cdot \vec{y}^0$
- Proof: For the general case, see Appendix C.

#### From Lemma to Supporting Hyperplane Thm

- If g is differentiable and  $\mathcal{Y} = \left\{ \vec{y} | g(\vec{y}) \ge g(\vec{y}^0) \right\}$ is convex, then  $\vec{y} \in \mathcal{Y} \implies -\vec{p} \cdot (\vec{y} - \vec{y}^0) \ge 0$  $\implies \vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$
- Attempt part (ii) of S. H. T.
- Note:  $\vec{y} \in \operatorname{int} \mathcal{Y} \Rightarrow \exists \vec{y}' = \vec{y} + \vec{\epsilon} \in \mathcal{Y}, \vec{\epsilon} \gg 0$
- And  $\vec{p} \cdot \vec{y}' = \vec{p} \cdot \vec{y} + \vec{p} \cdot \vec{\epsilon} \le \vec{p} \cdot \vec{y}^0$
- If  $\vec{p} \cdot \vec{\epsilon} > 0 \Rightarrow \vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$ 
  - Why is this the case? See Prop. 1-1.3...

### Supporting Hyperplane Theorem

Proposition 1.1-1 (Supporting Hyperplane)

- Suppose  $\mathcal{Y} \subset \mathbb{R}^n$  is non-empty and convex,
- And  $\vec{y}^0$  lies on the boundary of  $\gamma$
- Then, there exists  $\vec{p} \neq 0$  such that
- i. For all  $\vec{y} \in \mathcal{Y}$ ,  $\vec{p} \cdot \vec{y} \leq \vec{p} \cdot \vec{y}^0$
- ii. For all  $\vec{y} \in \operatorname{int} \mathcal{Y}, \ \vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$
- Proof: For the general case, see Appendix C.

## Proof of Lemma 1.1-2

• If g is differentiable and  $\mathcal{Y}=\left\{\vec{y}|g(\vec{y})\geq g(\vec{y}^0)\right\}$  is convex, then

$$\vec{y} \in \mathcal{Y} \Rightarrow \frac{\partial g}{\partial \vec{y}}(\vec{y}^0) \cdot (\vec{y} - \vec{y}^0) \ge 0$$

– Proof:

- For  $\vec{y} \in \mathcal{Y}$ , consider  $\vec{y}^{\lambda} = (1 \lambda)\vec{y}^0 + \lambda\vec{y} \in \mathcal{Y}$
- So,  $g(\vec{y}^{\lambda}) g(\vec{y}^{0}) \ge 0$
- Define  $h(\lambda) \equiv g(\vec{y}^{\lambda}) = g(\vec{y}^0 + \lambda(\vec{y} \vec{y}^0))$

#### Proof of Lemma 1.1-2

$$\begin{split} \vec{y} \in \mathcal{Y} &\Rightarrow \vec{y}^{\lambda} = (1 - \lambda)\vec{y}^{0} + \lambda\vec{y} \in \mathcal{Y} \\ h(\lambda) \equiv g(\vec{y}^{\lambda}) = g(\vec{y}^{0} + \lambda(\vec{y} - \vec{y}^{0})) & \text{dh} \\ \underline{h(\lambda) - h(0)} &= \underbrace{g((\vec{y}^{0} + \lambda(\vec{y} - \vec{y}^{0})) - g(\vec{y}^{0})}_{> 0} \end{split}$$

• By Lemma. Therefore, by chain rule:

$$\frac{dh}{d\lambda}(\lambda) \Big|_{\lambda=0} = \frac{\partial g}{\partial \vec{y}} (\vec{y}^0 + \lambda(\vec{y} - \vec{y}^0)) \cdot (\vec{y} - \vec{y}^0) \Big|_{\lambda=0}$$
$$= \frac{\partial g}{\partial \vec{y}} (\vec{y}^0) \cdot (\vec{y} - \vec{y}^0) \ge 0. \square$$

#### Example

- A professor has z=25 units of "brain-power"
- Allocates  $z_2$  units to produce TSSCI papers
- Produce  $y_2 = 2\sqrt{z_2}$  number of TSSCI papers
- Allocates  $z_3$  units to produce SSCI papers
- Produce  $y_3 = \sqrt{z_3}$  number of SSCI papers
- Set of feasible plans is  $(y_1 = -z)$

$$\mathcal{Y} = \left\{ \vec{y} \middle| g(\vec{y}) = -y_1 - \frac{1}{4}y_2^2 - y_3^2 \ge 0 \right\}$$

#### Example

– Professor W is working at full capacity

- Professor W's output is  $\vec{y}^0 = (-25, 8, 3)$ - 8 TSSCI papers and 3 SSCI papers!
- What reward scheme can support this?  $\vec{p} = -\frac{\partial g}{\partial \vec{y}}(\vec{y}^0) = (1, \frac{1}{2}y_2^0, 2y_3^0) = (1, \underline{4}, \underline{6})$
- To instead induce  $(y_2^1, y_3^1) = (2, 2\sqrt{6}) \approx (2, 5)$ - Approx. 2 TSSCI papers and 5 SSCI papers  $\vec{p} = (1, \frac{1}{2}y_2^1, 2y_3^1) = (1, 1, 4\sqrt{6}) \approx (1, \underline{1, 10})$

## Positive Prices (Free Disposal)

- Supporting Hyperplane theorem has economic meaning if <u>prices are positive</u>
  - Need another assumption
- Free Disposal
- For any feasible production  $\mathsf{plan}\,ec y\in\mathcal{Y}$  and any
- $\vec{\delta} > 0$ , the production plan  $\vec{y} \vec{\delta}$  is also feasible

## Supporting Prices

• With free disposal, we can prove:

Proposition 1.1-3 (Supporting Prices)

- If  $\vec{y}^0$  is a boundary point of a convex set  $\mathcal Y$
- And the free disposal assumption holds,
- Then, there exists a price vector  $\vec{p} > \vec{0}$  such
- that  $\vec{p} \cdot \vec{y} \leq \vec{p} \cdot \vec{y}^0$  for all  $\vec{y} \in \mathcal{Y}$
- Moreover, if  $\vec{0} \in \mathcal{Y}$ , then  $\vec{p} \cdot \vec{y}^0 \geq 0$
- Finally, for all  $\vec{y} \in \operatorname{int} \mathcal{Y}$ ,  $\vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$  part (ii)

Motivation Baseline Games Robustness Games Behavioral Theory

### Supporting Prices

- Proof: Supporting Hyperplane Theorem says:
- There is some  $\vec{p} \neq \vec{0}$  such that, for all  $\vec{y} \in \mathcal{Y}$ ,
- $\vec{p} \cdot (\vec{y}^0 \vec{y}) \ge 0$ . Now need to show  $\underline{p_i} \ge 0$
- By free disposal,  $\vec{y}' = \vec{y}^0 \vec{\delta} \in \mathcal{Y}, \forall \vec{\delta} > \vec{0}$
- Set  $\vec{\delta} = (1, 0, \cdots, 0), \vec{p} \cdot (\vec{y}^0 \vec{y}') = p_1 \ge 0$
- Set  $\vec{\delta} = (0, 1, 0, \cdots), \ \vec{p} \cdot (\vec{y}^0 \vec{y}') = p_2 \ge 0$
- ... • Set  $\vec{\delta} = (0, \cdots, 0, 1), \vec{p} \cdot (\vec{y}^0 - \vec{y}') = p_n \ge 0$

#### Supporting Prices

- Since  $\vec{p} \cdot \vec{y} \leq \vec{p} \cdot \vec{y}^0$  for all  $\vec{y} \in \mathcal{Y}$ , if  $\vec{0} \in \mathcal{Y}$
- Set  $\vec{y} = \vec{0}$  and we have  $\vec{p} \cdot \vec{y}^0 \ge 0$
- Claim: For all  $\vec{y} \in \operatorname{int} \mathcal{Y}$ ,  $\vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$  part (ii)
- For  $\vec{y} \in \operatorname{int} \mathcal{Y} \implies \exists \vec{y}' = \vec{y} + \vec{\epsilon} \in \mathcal{Y}, \vec{\epsilon} \gg 0$
- And  $\vec{p} \cdot \vec{y}' = \vec{p} \cdot \vec{y} + \vec{p} \cdot \vec{\epsilon} \le \vec{p} \cdot \vec{y}^0$
- Since  $\underline{\vec{p}} > 0$ , we have  $\vec{p} \cdot \vec{\epsilon} > 0 \Rightarrow \vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$

## **Back to Publication Rewards**

- Should NTU really pay NT\$300,000 per article published in Science or Nature?
  - Is the production set for Science/Nature convex?
- What would be a better incentive scheme to encourage publications in Science/Nature?
  - Efficient Wages (High Fixed Wages)?
  - Tenure?
  - Endowed Chair Professorships?

## Back to Publication Rewards

- What are some tasks do you expect piecerate incentives to work?
  - Sales
  - Real estate agents
- What about a fixed payment?
  - Secretaries and Office Staff
  - Store Clerk
- What about other incentives schemes?
   That's for you to answer (in contract theory)!

## Summary of 1.1

- Input = Negative Output
- Vector space of  $\vec{y}$
- Convexity (quasi-concavity) is the key for supporting prices (=linearization)
- What is a good incentive scheme to induce professor to publish in Science and Nature?
- Consumer = Producer
- Homework: Exercise 1.1-4 (Optional: 1.1-6)

#### Another Example: Linear Model

- What if firm has n plants producing the same product q using m inputs  $z = (z_1, \dots, z_m)$ ?
- Need to consider activity level x<sub>j</sub> for plant j
   Produce output a<sub>0j</sub>x<sub>j</sub> with input a<sub>ij</sub>x<sub>j</sub>, i = 1, ..., m

• Total output 
$$\sum_{j=1}^{n} a_{0j} x_j$$
; Total input  $\sum_{j=1}^{n} a_{ij} x_j, \forall i$ 

• Linear Production Set (convex, free disposal)  $\mathcal{Y} = \{(-z,q) | x \ge 0, q \le a_0 \cdot x, Ax \le z\}$ 

#### Another Example: Linear Model



#### Production Set and Profits

- Production vector  $y = (y_1, \cdots, y_{m+n}) = (-z_1, \cdots, -z_m, q_1, \cdots, q_n)$
- Production  $\operatorname{Set} \mathcal{Y} \subset \mathbf{R}^{m+n}$ =Set of Feasible Production Plan
- Price vector  $p = (p_1, \cdots, p_{m+n})$



## Quasi-Concavity

*f* is quasi-concave if the upper contour set of *f* set are convex. Equivalently, for any y<sup>0</sup>, y<sup>1</sup> and convex combination

$$y^{\lambda} = \lambda \cdot y^{0} + (1 - \lambda) \cdot y^{1},$$
  
$$f(y^{\lambda}) \ge \min \left\{ f(y^{0}), f(y^{1}) \right\}.$$

- Why is this useful?
  - Because we have...

#### Separating Hyperplane Theorem

• Proposition 1.1-2:

Suppose *S* and *T* are convex sets with a common boundary point  $s^0 = t^0$ and no common interior points. Then there is some *p* such that, for all  $s \in S$  and  $t \in T$ ,  $p \cdot s \leq p \cdot t$ .

(Inequality strict if either *s* or *t* is an interior.)

### Separating Hyperplane Theorem

• Proof of Proposition 1.1-2: Define  $\Upsilon = S - T$ , then  $s^0 - t^0 = 0 \in \Upsilon$ If  $\Upsilon$  is convex (verify this!!!), then... Supporting Hyperplane Theorem says: there is some  $p \neq 0$  such that, for all  $y \in \Upsilon$ ,  $p \cdot y \leq p \cdot (s^0 - t^0) = 0.$ Since y = s - t for some  $s \in S, t \in T$ ,  $p \cdot s \leq p \cdot t$  for all  $s \in S, t \in T$ .