Supporting Prices and Convexity

Joseph Tao-yi Wang 2019/9/10 (Lecture 1, Micro Theory I)

Overview of Chapter 1

- **Theory of Constrained Maximization** – **Why should we care about this?**
- **What is Economics?**
- **Economics is the study of how society manages its scarce resources (Mankiw, Ch.1)**

– **"Economics is the science which studies human behavior as a relationship between given ends and scarce means which have alternative uses." (Lionel Robbins, 1932)**

Overview of Chapter 1

- **Other Historical Accounts:**
	- **Economics is the "study of how societies use scarce resources to produce valuable commodities and distribute them among different people." (Paul A. Samuelson, 1948)**
- **I think Economics is the study of institutions & human behavior (reaction to institutions)**
- **Either way, constrained maximization is key!**

Tools Introduced in Chapter 1

- **1. Supporting Hyperplanes (and Convexity)**
- **2. First Order Conditions (Kuhn-Tucker)**
- **3. Envelope Theorem**
- **But why do I need to know the math?**
- **When does Coase conjecture work?**
	- **It depends—Math makes these predictions precise**
- **What happens if you ignore the conditions required for theory to work? (Recall 2008/09!)**

Publication Reward Problem

- **Example: How should NTU reward its professors to publish journal articles?**
	- **Should NTU pay, say, NT\$300,000 per article published in Science or Nature?**
- **Well, it depends...**
- **Peek the answer ahead:**
	- **Yes, if the production set is convex.**
	- **No, if, for example, there is initial increasing returns to scale.**

Supporting Prices

- **More generally,**
- **can prices and profit maximization provide appropriate incentives to induce all possible efficient production plans?**
	- **Is there a price vector that supports each efficient production plan?**
- **(Yes, but when?)**
- **Need some definitions first...**

Production Plan and Production Set

- **A plant can:**
- **produce** *n* outputs $\vec{q} = (q_1, \cdots, q_n)$
- **using up to m inputs** $\vec{z} = (z_1, \dots, z_m)$
- **Production Plan** (\vec{z}, \vec{q})
- Production Set $\mathcal{Y} \subset \mathbb{R}^{m+n}_+$ **= Set of all Feasible Production Plan**
- **Production Vector (treat inputs as negative)**

$$
\vec{y} = (-\vec{z}, \vec{q}) = (-z_1, \cdots, -z_m, q_1, \cdots, q_n)
$$

Motivation Baseline Games Robustness Games Behavioral Theory

Production Set and Profits

- **Production vector**
- $\vec{y} = (y_1, \cdots, y_{m+n}) = (-z_1, \cdots, -z_m, q_1, \cdots, q_n)$
- Production Set $\mathcal{Y} \subset \mathbb{R}^{m+n}$ **= Set of Feasible Production Plan**
- Price vector $\vec{p} = (p_1, \cdots, p_{m+n})$

Motivation Baseline Games Robustness Games Behavioral Theory

EX: Production Function & Production Set

- **A professor has 25 units of "brain-power"**
- Allocates z_1 units to produce TSSCI papers
- Produce $q_1 = 4\sqrt{z_1}$ (Production Function)
- **Production Set**

$$
\mathcal{Y}_1 = \left\{ (z_1, q_1) \middle| z_1 \ge 0, q_1 \le 4\sqrt{z_1} \right\}
$$

- Treating inputs as negatives, $\vec{y} = (-\vec{z}, \vec{q})$
- **Production Set is** $\mathcal{Y}_1 = \{(y_1, y_2) | -16y_1 - y_2^2 \geq 0\}$

Production Efficiency

- A production plan \vec{y} is wasteful if another plan in y achieves larger output with smaller input
- \vec{y} is production efficient (=non-wasteful) if

There is no
$$
\vec{y} \in \mathcal{Y}
$$
 such that $\vec{y} > \vec{\overline{y}}$

- $-$ Note: $\vec{y} \geq \frac{1}{y}$ if $y_j \geq \overline{y}_j$ for all j
	- $\vec{y} > \vec{y}$ if inequality is strict for some *j*

 $\vec{y} \gg \vec{y}$ if inequality is strict for all *j*

Can Prices Support Efficient Production?

- **A professor has 25 units of "brain-power"**
- Allocates y_1 units to produce TSSCI papers
- Price of brain-power is p_1
- Production Set \mathcal{Y}_1
- Can we induce production target y_2^0 ?
- With piece-rate prize p_2 ?

Can Prices Support Efficient Production?

Too High? Let's Lower the Transfer Price...

Will this Always Work?

What Made It Fail?

- **The last production set was NOT convex.**
- Production Set \mathcal{Y}_1 is convex if for any \vec{y}^0 , \vec{y}^1
- Its convex combination (for $0 < \lambda < 1$)

 $\vec{y}^{\lambda} = (1 - \lambda)\vec{y}^{0} + \lambda\vec{y}^{1} \in \mathcal{Y}_{1}$

– **(is also in the production set)**

• **Is it true that we can use prices to guide production decisions as long as production sets are convex?**

Supporting Hyperplane Theorem

Proposition 1.1-1 (Supporting Hyperplane)

- Suppose $\mathcal{Y} \subset \mathbb{R}^n$ is non-empty and convex,
- And \vec{y}^0 lies on the boundary of γ
- Then, there exists $\vec{p} \neq 0$ such that
- **i.** For all $\vec{y} \in \mathcal{Y}, \ \vec{p} \cdot \vec{y} \leq \vec{p} \cdot \vec{y}^0$
- ii. For all $\vec{y} \in \text{int} \mathcal{Y}, \ \vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$

– **Can we obtain part (ii)???**

• **Proof: For the general case, see Appendix C.**

Supporting Hyperplane Thm (Special Case)

- **Consider special case where**
- Production set y is the upper contour set $\mathcal{Y} = \{\vec{y} | g(\vec{y}) \geq g(\vec{y}^0)\}\,$, g is differentiable
- Suppose the gradient vector is non-zero at \vec{y}^0
- The linear approximation of g at \vec{y}^0 is:
 $\frac{\overline{g}(\vec{y}) = g(\vec{y}^0) + \frac{\partial g}{\partial \vec{u}}(\vec{y}^0) \cdot (\vec{y} \vec{y}^0)}$
- If y is convex, it lies in upper contour set of \overline{g}

Special Case of Supporting Hyperplane Thm

- **Lemma 1.1-2**
- If g is differentiable and $y = \{\vec{y} | g(\vec{y}) \ge g(\vec{y}^0)\}\$ **is convex, then**

$$
\vec{y} \in \mathcal{Y} \implies \frac{\partial g}{\partial \vec{y}}(\vec{y}^0) \cdot (\vec{y} - \vec{y}^0) \ge 0
$$

- **This tells us how to calculate the supporting prices (under this special case):**
- For boundary point \vec{y}^0 , choose $\vec{p} = -\frac{\partial g}{\partial \vec{x}}(\vec{y}^0)$

From Lemma to Supporting Hyperplane Thm

- If g is differentiable and $\mathcal{Y} = \{\vec{y} | g(\vec{y}) \ge g(\vec{y}^0)\}\$ is convex, then set $\vec{p} = -\frac{\partial g}{\partial \vec{u}}(\vec{y}^0)$
- By lemma: $\vec{y} \in \mathcal{Y} \Rightarrow -\vec{p} \cdot (\vec{y} \vec{y}^0) \ge 0$ $\Rightarrow \vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$
- **This gives us part (i) of S. H. T.** – **What about part (ii)? See Prop. 1-1.3...**

Supporting Hyperplane Theorem

Proposition 1.1-1 (Supporting Hyperplane)

- Suppose $\mathcal{Y} \subset \mathbb{R}^n$ is non-empty and convex,
- And \vec{y}^0 lies on the boundary of γ
- Then, there exists $\vec{p} \neq 0$ such that
- i. For all $\vec{y} \in \mathcal{Y}, \ \vec{p} \cdot \vec{y} \leq \vec{p} \cdot \vec{y}^0$
- **Proof: For the general case, see Appendix C.**

From Lemma to Supporting Hyperplane Thm

- If g is differentiable and $\mathcal{Y} = \{\vec{y} | g(\vec{y}) \ge g(\vec{y}^0)\}\$ is convex, then $\vec{y} \in \mathcal{Y} \Rightarrow -\vec{p} \cdot (\vec{y} - \vec{y}^0) \ge 0$ $\Rightarrow \vec{p} \cdot \vec{q} < \vec{p} \cdot \vec{q}^0$
- **Attempt part (ii) of S. H. T.**
- Note: $\vec{y} \in \text{int} \mathcal{Y} \implies \exists \vec{y}' = \vec{y} + \vec{\epsilon} \in \mathcal{Y}, \vec{\epsilon} \gg 0$
- And $\vec{p} \cdot \vec{y}' = \vec{p} \cdot \vec{y} + \vec{p} \cdot \vec{\epsilon} \leq \vec{p} \cdot \vec{y}^0$
- If $\vec{p} \cdot \vec{\epsilon} > 0 \Rightarrow \vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$
	- **Why is this the case? See Prop. 1-1.3...**

Supporting Hyperplane Theorem

Proposition 1.1-1 (Supporting Hyperplane)

- Suppose $\mathcal{Y} \subset \mathbb{R}^n$ is non-empty and convex,
- And \vec{y}^0 lies on the boundary of γ
- Then, there exists $\vec{p} \neq 0$ such that
- **i.** For all $\vec{y} \in \mathcal{Y}, \ \vec{p} \cdot \vec{y} \leq \vec{p} \cdot \vec{y}^0$
- ii. For all $\vec{y} \in \text{int} \mathcal{Y}, \ \vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$
- **Proof: For the general case, see Appendix C.**

Proof of Lemma 1.1-2

• If g is differentiable and $\mathcal{Y} = \{\vec{y} | g(\vec{y}) \geq g(\vec{y}^0)\}\$ **is convex, then**

$$
\vec{y} \in \mathcal{Y} \implies \frac{\partial g}{\partial \vec{y}}(\vec{y}^0) \cdot (\vec{y} - \vec{y}^0) \ge 0
$$

– **Proof:**

- For $\vec{y} \in \mathcal{Y}$, consider $\vec{y}^{\lambda} = (1 \lambda)\vec{y}^{0} + \lambda \vec{y} \in \mathcal{Y}$
- So, $g(\vec{y}^{\lambda}) g(\vec{y}^0) \geq 0$
- Define $h(\lambda) \equiv g(\vec{y}^{\lambda}) = g(\vec{y}^0 + \lambda(\vec{y} \vec{y}^0))$

Proof of Lemma 1.1-2

$$
\vec{y} \in \mathcal{Y} \implies \vec{y}^{\lambda} = (1 - \lambda)\vec{y}^{0} + \lambda\vec{y} \in \mathcal{Y}
$$

\n
$$
h(\lambda) \equiv g(\vec{y}^{\lambda}) = g(\vec{y}^{0} + \lambda(\vec{y} - \vec{y}^{0})) \qquad \text{d}^{\lambda}
$$

\n
$$
\frac{h(\lambda) - h(0)}{\lambda} = \frac{g((\vec{y}^{0} + \lambda(\vec{y} - \vec{y}^{0})) - g(\vec{y}^{0})}{\lambda} \Big|
$$

• **By Lemma. Therefore, by chain rule:**

$$
\left. \frac{dh}{d\lambda}(\lambda) \right|_{\lambda=0} = \frac{\partial g}{\partial \vec{y}} (\vec{y}^0 + \lambda(\vec{y} - \vec{y}^0)) \cdot (\vec{y} - \vec{y}^0) \right|_{\lambda=0}
$$

$$
= \frac{\partial g}{\partial \vec{y}} (\vec{y}^0) \cdot (\vec{y} - \vec{y}^0) \ge 0.
$$

Example

- A professor has $z = 25$ units of "brain-power"
- Allocates z_2 units to produce TSSCI papers
- Produce $y_2 = 2\sqrt{z_2}$ number of TSSCI papers
- Allocates z_3 units to produce SSCI papers
- Produce $y_3 = \sqrt{z_3}$ number of SSCI papers
- Set of feasible plans is $(y_1 = -z)$

$$
\mathcal{Y} = \left\{ \vec{y} \middle| g(\vec{y}) = -y_1 - \frac{1}{4}y_2^2 - y_3^2 \ge 0 \right\}
$$

Example

– **Professor W is working at full capacity**

- Professor W's output is $\vec{y}^0 = (-25, 8, 3)$ – **8 TSSCI papers and 3 SSCI papers!**
- **What reward scheme can support this?** $\vec{p} = -\frac{\partial g}{\partial \vec{y}}(\vec{y}^0) = (1, \frac{1}{2}y_2^0, 2y_3^0) = (1, \underline{4, 6})$ • To instead induce $(y_2^1, y_3^1) = (2, 2\sqrt{6}) \approx (2, 5)$
	- **Approx. 2 TSSCI papers and 5 SSCI papers** $\vec{p} = (1, \frac{1}{2}y_2^1, 2y_3^1) = (1, 1, 4\sqrt{6}) \approx (1, \underline{1, 10})$

Positive Prices (Free Disposal)

- **Supporting Hyperplane theorem has economic meaning if prices are positive**
	- **Need another assumption**
- **Free Disposal**
- For any feasible production plan $\vec{y} \in \mathcal{Y}$ and any
- $\vec{\delta} > 0$, the production plan $\vec{y} \vec{\delta}$ is also feasible

Supporting Prices

• **With free disposal, we can prove:**

Proposition 1.1-3 (Supporting Prices)

- If \vec{y}^0 is a boundary point of a convex set \mathcal{Y}
- **And the free disposal assumption holds,**
- Then, there exists a price vector $\vec{p} > \vec{0}$ such
- that $\vec{p} \cdot \vec{y} \leq \vec{p} \cdot \vec{y}^0$ for all $\vec{y} \in \mathcal{Y}$
- Moreover, if $\vec{0} \in \mathcal{Y}$, then $\vec{p} \cdot \vec{y}^0 \ge 0$
- Finally, for all $\vec{y} \in \text{int} \mathcal{Y}, \ \vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$ part (ii)

Motivation Baseline Games Robustness Games Behavioral Theory

Supporting Prices

- **Proof: Supporting Hyperplane Theorem says:**
- There is some $\vec{p} \neq \vec{0}$ such that, for all $\vec{y} \in \mathcal{Y}$,
- $\vec{p} \cdot (\vec{y}^0 \vec{y}) \ge 0$. Now need to show $p_i \ge 0$
- By free disposal, $\vec{y}' = \vec{y}^0 \vec{\delta} \in \mathcal{Y}, \forall \vec{\delta} > \vec{0}$
- Set $\vec{\delta} = (1, 0, \dots, 0), \vec{p} \cdot (\vec{y}^0 \vec{y}') = p_1 \ge 0$
- Set $\vec{\delta} = (0, 1, 0, \dots), \vec{p} \cdot (\vec{y}^0 \vec{y}') = p_2 \ge 0$
- **...** • Set $\vec{\delta} = (0, \dots, 0, 1), \vec{p} \cdot (\vec{y}^0 - \vec{y}') = p_n \ge 0$

Supporting Prices

- Since $\vec{p} \cdot \vec{y} \le \vec{p} \cdot \vec{y}^0$ for all $\vec{y} \in \mathcal{Y}$, if $\vec{0} \in \mathcal{Y}$
- Set $\vec{u} = \vec{0}$ and we have $\vec{p} \cdot \vec{y}^0 \ge 0$
- **Claim:** For all $\vec{y} \in \text{int} \mathcal{Y}, \vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$ part (ii)
- For $\vec{y} \in \text{int} \mathcal{Y} \Rightarrow \exists \vec{y}' = \vec{y} + \vec{\epsilon} \in \mathcal{Y}, \vec{\epsilon} \gg 0$
- And $\vec{p} \cdot \vec{y}' = \vec{p} \cdot \vec{u} + \vec{p} \cdot \vec{\epsilon} \leq \vec{p} \cdot \vec{u}^0$
- Since $\vec{p} > 0$, we have $\vec{p} \cdot \vec{\epsilon} > 0 \Rightarrow \vec{p} \cdot \vec{y} < \vec{p} \cdot \vec{y}^0$

Back to Publication Rewards

- **Should NTU really pay NT\$300,000 per article published in Science or Nature?**
	- **Is the production set for Science/Nature convex?**
- **What would be a better incentive scheme to encourage publications in Science/Nature?**
	- **Efficient Wages (High Fixed Wages)?**
	- **Tenure?**
	- **Endowed Chair Professorships?**

Back to Publication Rewards

- **What are some tasks do you expect piecerate incentives to work?**
	- **Sales**
	- **Real estate agents**
- **What about a fixed payment?**
	- **Secretaries and Office Staff**
	- **Store Clerk**
- **What about other incentives schemes?** – **That's for you to answer (in contract theory)!**

Summary of 1.1

- Input = Negative Output
- Vector space of \vec{y}
- **Convexity (quasi-concavity) is the key for supporting prices (=linearization)**
- **What is a good incentive scheme to induce professor to publish in Science and Nature?**
- **Consumer = Producer**
- **Homework: Exercise 1.1-4 (Optional: 1.1-6)**

Another Example: Linear Model

- What if firm has *n* plants producing the same **product** q using m inputs $z = (z_1, \dots, z_m)$?
- Need to consider activity level x_j for plant j $-$ Produce output $a_{0j}x_j$ with input $a_{ij}x_j$, $i = 1, ..., m$

\n- Total output
$$
\sum_{j=1}^{n} a_{0j} x_j
$$
, Total input $\sum_{j=1}^{n} a_{ij} x_j$, $\forall i$
\n

• **Linear Production Set (convex, free disposal)** $\mathcal{Y} = \{(-z, q) | x \geq 0, q \leq a_0 \cdot x, Ax \leq z\}$

Another Example: Linear Model

Production Set and Profits

- Production vector
 $y = (y_1, \cdots, y_{m+n}) = (-z_1, \cdots, -z_m, q_1, \cdots, q_n)$
- Production Set $\mathcal{Y} \subset \mathbf{R}^{m+n}$ **=Set of Feasible Production Plan**
- **Price vector** $p = (p_1, \cdots, p_{m+n})$

Quasi-Concavity

• **f is quasi-concave if the upper contour set of f set are convex. Equivalently,** for any y^0 , y^1 and convex combination

$$
y^{\lambda} = \lambda \cdot y^{0} + (1 - \lambda) \cdot y^{1},
$$

$$
f(y^{\lambda}) \ge \min \{ f(y^{0}), f(y^{1}) \}.
$$

- **Why is this useful?**
	- **Because we have…**

Separating Hyperplane Theorem

• **Proposition 1.1-2:**

with a common boundary point $s^0 = t^0$ Suppose S and T are convex sets and no common interior points. Then there is some p such that, for all $s \in S$ and $t \in T$, $p \cdot s \leq p \cdot t$.

(Inequality strict if either s or t is an interior.)

Separating Hyperplane Theorem

• **Proof of Proposition 1.1-2:** $p \cdot y \leq p \cdot (s^0 - t^0) = 0.$ Supporting Hyperplane Theorem says: there is some $p \neq 0$ such that, for all $y \in \Upsilon$, Since $y = s - t$ for some $s \in S, t \in T$, $p \cdot s \leq p \cdot t$ for all $s \in S, t \in T$. Define $\Upsilon = S - T$, then $s^0 - t^0 = 0 \in \Upsilon$ If Υ is convex (verify this!!!), then...