Principal-Agent Problem

Joseph Tao-yi Wang 2014/10/31

(Lecture 12, Micro Theory I)

Why Should We Care About This?

- Principal-Agent Relationships are Everywhere
 - Firm owner vs. manager
 - Insurance company vs. insurer
 - People vs. politician
 - Professor vs. student (or TA!)
 - Policymaker vs. people/firms
 - Planner vs. actor (even in your brain!)
 - Self-control: Your today-self vs. tomorrow-self

The Principal-Agent Problem

- Firm owner (Principal) hires manager (Agent)
- Revenue $y_1 < \cdots < y_S$ in state $s = 1 \sim S$, public
- Cost C(x) for agent action $x \in X = \{x_1, \cdots, x_n\}$ – Action only known to agent
- State s occurs with probability $\pi_s(x)$ given x
- Assume: Likelihood ratio increasing overs s

$$L(s, x, x') = \frac{\pi_s(x')}{\pi_s(x)}, x' > x$$

- Greater output = more likely desirable action

Contracting under Full Information

- Principal's VNM utility function $u(\cdot)$
- Agent's utility is $Ev(\cdot) C(x)$
- Contract: $w(x) = (w_1(x), w_2(x), \cdots, w_S(x))$ - (Wage $w_s(x)$ depends on state and action x)
- Expected Utility of each party: $U_A(x,w) = \sum_{s=1}^{S} \pi_s(x)v(w_s(x)) - C(x)$ $U_P(x,w) = \sum_{s=1}^{S} \pi_s(x)u(y_s - w_s(x))$

Contracting under Incomplete Information

• Contract: $w = (w_1, w_2, \cdots, w_S)$

– Wage w_s depends on state, but not hidden action \boldsymbol{x}

- Expected Utility of each party: $U_A(x,w) = \sum_{s=1}^{S} \pi_s(x)v(w_s) - C(x)$ $U_P(x,w) = \sum_{s=1}^{S} \pi_s(x)u(y_s - w_s)$
- Note: Principal's Expected Utility still depends on hidden action *x*, but cannot contract on it!

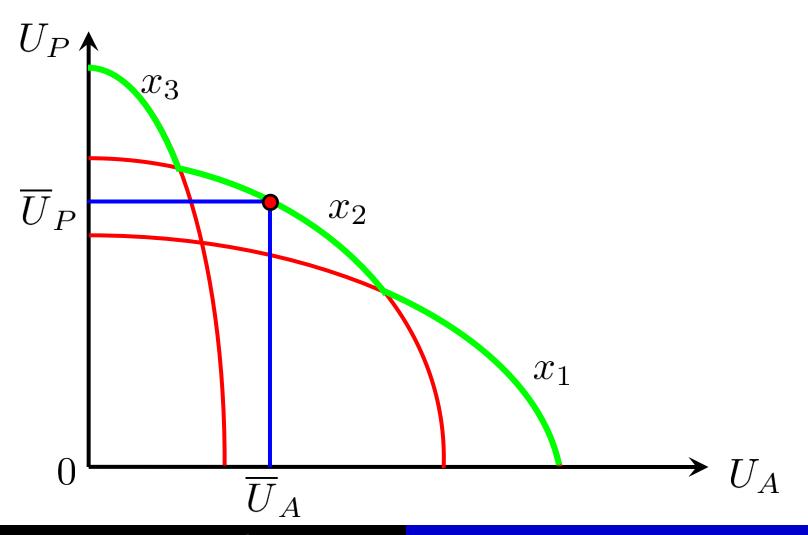
Efficient Contract Under Full Information

• If action is observable, solve Pareto problem:

$$\max_{x,w} \left\{ \sum_{s=1}^{S} \pi_s(x) v(w_s(x)) - C(x) \right|$$
$$x \in X = \{x_1, \cdots, x_n\}, \sum_{s=1}^{S} \pi_s(x) u(y_s - w_s(x)) \ge \overline{U}_P \right\}$$
• 2-step strategy:

- 1. Fix an action x, solve the Pareto problem
- 2. Find the envelope of PEAs under different \boldsymbol{x}

Efficient Contract Under Full Information



Joseph Tao-yi Wang Principal-Agent Problem

Principal's Optimal Contract: Full Information[®]

- Which efficient contract does Principal like?
- $\max_{x,w} \left\{ \sum_{s=1}^{S} \pi_s(x) u(y_s w_s(x)) \right|$ $x \in \{x_1, \cdots, x_n\}, \sum_{s=1}^{S} \pi_s(x) v(w_s(x)) C(x) \ge \overline{U}_A \right\}$ 2-step strategy:
- 1. Fix action x, solve the Pareto problem
- 2. Find the action x^* that maximizes U_P

Risk Neutral Principal vs. Risk Averse Agent ⁹

• Principal is risk neutral, solve Pareto problem:

$$\max_{x,w} \left\{ \sum_{s=1}^{S} \pi_s(x) \underbrace{(y_s - w_s(x))}_{S} \right|$$
$$x \in X, \sum_{s=1}^{S} \pi_s(x) v(w_s(x)) - C(x) \ge \overline{U}_A \right\}$$

- Claim: Principal bears all risk and $w_s(x) = w(x)$
 - Agent is risk averse, can offer lower, but fixed wage and still make agent not worse off...

Why Fixed Wage Contract? Consider...

S

$$\underline{\overline{w}(x)} = \sum_{s=1} \pi_s(x) w_s(x) \text{ for } w(x) = (w_1(x), \cdots, w_S(x))$$

• Agent is risk averse, so by Jenson's inequality:

$$v(\overline{w}(x)) - C(x) > \sum_{s=1} \pi_s(x)v(w_s(x)) - C(x) \ge \overline{U}_A$$

- Inequality strict unless $w_1(x) = \cdots = w_S(x)$

- Principal can instead offer $w_s(x) = \overline{w}(x) \epsilon$ to bear all risk (and agent still not worse off!)
- Not optimal unless wage is fixed: $w_s(x) = w$

Risk Neutral Principal vs. Risk Averse Agent ¹¹

• Fix \overline{x} , the Pareto problem becomes:

$$\max_{w} \left\{ \sum_{s=1}^{S} \underline{\pi_{s}(\overline{x})y_{s}} - w \left| v(w) - C(\overline{x}) \geq \overline{U}_{A} \right\} \right\}$$
$$\mathcal{L} = \sum_{s=1}^{S} \pi_{s}(\overline{x})y_{s} - w + \lambda \left[v(w) - C(\overline{x}) - \overline{U}_{A} \right]$$
FOC:

 $w: -1 + \lambda v'(w) \leq 0$ with equality if w > 0 $\lambda: v(w) - C(\overline{x}) \geq \overline{U}_A$ with equality if $\lambda > 0$

Risk Neutral Principal vs. Risk Averse Agent 12 $w: -1 + \lambda v'(w) \leq 0$ with equality if w > 0 $\lambda: v(w) - C(\overline{x}) \geq U_A$ with equality if $\lambda > 0$ Constraint must bind (or can decrease the fixed wage w and increase U_P), Hence, • $v(w) = \overline{U}_A + C(\overline{x})$, so optimal wage (for \overline{x}) is $w = v^{-1} \left(\overline{U}_A + C(\overline{x}) \right)$ • Find $x^* \in X = \{x_1, \cdots, x_n\}$ to: $\max_{x} \left\{ \sum_{s=1}^{S} \pi_s(x) y_s - v^{-1} \left(\overline{U}_A + C(x) \right) \right\}$

Risk Averse Principal vs. Risk Neutral Agent ¹³

• Suppose instead: Agent is risk neutral, solve:

$$\max_{x,w} \left\{ \sum_{s=1}^{S} \pi_s(x) u(y_s - w_s(x)) \right|$$
$$x \in X, \sum_{s=1}^{S} \pi_s(x) (\underline{w_s(x)}) - C(x) \ge \overline{U}_A \right\}$$

- Claim: Agent bears all risk and $r_s = r$
 - Principal is risk averse, can offer lower, but fixed rent and still make principal not worse off...

Risk Averse Principal vs. Risk Neutral Agent 14

S

$$\overline{\overline{r}(x)} = \sum_{s=1}^{\infty} \pi_s(x) r_s \text{ for } r(x) = (r_1, \cdots, r_S) \\ = (y_1 - w_1(x), \cdots, y_S - w_S(x))$$

- Principal is risk averse, so by Jensen's inequality: $u(\overline{r}(x)) > \sum_{s=1}^{\infty} \pi_s(x)u(y_s - w_s(x)) = \sum_{s=1}^{\infty} \pi_s(x)u(r_s)$ - Inequality strict unless $r_1(x) = \cdots = r_S(x)$
- Principal can keep $r_s(x) = \overline{r}(x)$ and have risk neutral agent bear all risk (and not be worse off!)
- Not optimal unless rent is fixed: $r = y_s w_s(x)$

Risk Averse Principal vs. Risk Neutral Agent ¹⁵

• Fix \overline{x} , the Pareto problem becomes: $\max_{r} \left\{ u(r) \left| \sum_{s=1}^{S} \pi_{s}(\overline{x}) (\underline{y_{s}-r}) - C(\overline{x}) \ge \overline{U}_{A} \right. \right\}$ $\mathcal{L} = u(r) + \lambda \left[\sum_{s=1}^{S} \pi_s(\overline{x}) y_s - r - C(\overline{x}) - \overline{U}_A \right]$ • FOC: $r: u'(r) - \lambda \leq 0$ with equality if r > 0S

$$\lambda : \sum_{s=1} \pi_s(\overline{x}) y_s - r - C(\overline{x}) \ge \overline{U}_A \text{ with equality if } \lambda > 0$$

Risk Averse Principal vs. Risk Neutral Agent ¹⁶

S

$$r: u'(r) - \lambda \leq 0$$
 with equality if $r > 0$

$$\lambda : \sum_{s=1} \pi_s(\overline{x}) y_s - C(\overline{x}) \ge \overline{U}_A + r \text{ with equality if } \lambda > 0$$

Constraint must bind (or can increase fixed rent r to raise U_P), so optimal rent (for x̄) is r = ∑_{s=1}^S π_s(x̄)y_s - C(x̄) - Ū_A
Find x to: (S______)

$$\max_{x \in \{x_1, \cdots, x_n\}} \left\{ \sum_{s=1}^{\infty} \pi_s(x) y_s - C(x) \right\} - \overline{U}_A$$

Contracting under Incomplete Information

17

- Now consider Contract: $w = (w_1, w_2, \cdots, w_S)$
- EU: $U_A(x,w) = \sum_{s=1}^{S} \pi_s(x)v(w_s) - C(x)$ $U_P(x,w) = \sum_{s=1}^{S} \pi_s(x)u(y_s - w_s)$
 - Principal's EU still depends on hidden action x, but cannot contract on it! Can only induce x by:
- Incentive Compatibility (IC) Constraint: Under w, $U_A(x,w) \le U_A(x^*,w)$ for all $x \in X$

Optimal Contract: Incomplete Information ¹⁸

• For hidden action, solve Pareto problem:

 $\max_{x,w} \left\{ \sum_{s=1}^{S} \pi_s(x) u(y_s - w_s) \middle| \begin{array}{l} U_A(\tilde{x}, w) \leq U_A(x, w), \\ \text{(IC constraint added)} \end{array} \right. \\ \forall \tilde{x}, \sum_{s=1}^{S} \pi_s(x) v(w_s) - C(x) \geq \overline{U}_A \right\}$

- Not easy in general, except the case of...
- Risk Averse Principal vs. Risk Neutral Agent!!

Why is RA-Principal vs. RN-Agent Special? 19 • Optimal rent: $r = \sum \pi_s(\overline{x})y_s - C(\overline{x}) - \overline{U}_A$ • and \overline{x} solves $\max_{x \in X} \left\{ \sum_{s=1}^{S} \pi_s(x) y_s - C(x) \right\} - \overline{U}_A$ • So, under r, $\sum \pi_s(x)y_s - r - C(x) = U_A(x,w)$ s=1• IC holds! $\leq \sum \pi_s(\overline{x})y_s - r - C(\overline{x}) = U_A(\overline{x}, w)$ Can't do better than Full Info.

Optimal Contract: Incomplete Information ²⁰

- What if we are in the tough case solving...
 - $\max_{x,w} \left\{ \sum_{s=1}^{S} \pi_s(x) \lambda(y_s w_s) \middle| U_A(\tilde{x}, w) \le U_A(x, w), \\ \forall \tilde{x}, \sum_{s=1}^{S} \pi_s(x) v(w_s) C(x) \ge \overline{U}_A \right\}$

– EX: Risk Averse Agent vs. Risk Neutral Principal 1. Fix action x, solve the Pareto problem 2. Find the action x^* that maximizes U_P

Optimal Contract: Incomplete Information ²¹

• If only one IC binds

- Lowest-cost action binds or only 2 actions (S = 2) $\max_{w} \left\{ U_P(\overline{x}, w) | U_A(\underline{\tilde{x}}, w) \le U_A(\underline{\overline{x}}, w), U_A(\overline{x}, w) \ge \overline{U}_A \right\}$ $\mathcal{L} = U_P(\overline{x}) + \lambda \left[U_A(\overline{x}, w) - \overline{U}_A \right] + \mu \left[U_A(\overline{x}, w) - U_A(\widetilde{x}, w) \right]$ $\mathcal{L} = \sum_{s=1}^{S} \pi_s(\overline{x}) u(y_s - w_s) + \lambda \left| \sum_{s=1}^{S} \pi_s(\overline{x}) v(w_s) - C(\overline{x}) - \overline{U}_A \right|$ $+\mu \left| \sum_{s=1}^{S} \pi_s(\overline{x}) v(w_s) - C(\overline{x}) - \left(\sum_{s=1}^{S} \pi_s(\widetilde{x}) v(w_s) - C(\widetilde{x}) \right) \right|$

Optimal Contract: Incomplete Information

$$\mathcal{L} = \sum_{s=1}^{S} \pi_s(\overline{x}) u(y_s - w_s) + (\lambda + \mu) \left[\sum_{s=1}^{S} \pi_s(\overline{x}) v(w_s) - C(\overline{x}) \right]$$

22

$$+\mu \left[\sum_{s=1}^{D} \pi_s(\overline{x}) v(w_s) - \lambda \overline{U}_A - \mu \left[\sum_{s=1}^{D} \pi_s(\widetilde{x}) v(w_s) - C(\widetilde{x}) \right] \right]$$

$$w_s :- \pi_s(\overline{x})u'(y_s - w_s) + (\lambda + \mu)\pi_s(\overline{x})v'(w_s) - \mu\pi_s(\widetilde{x})v'(w_s) \le 0 \text{ (w/ equality if } w_s > 0)$$

$$\lambda : \underline{\sum \pi_s(\overline{x})v(w_s) - C(\overline{x})} \ge \overline{U}_A \text{ (w/ equality if } \lambda > 0)$$

 $\mu : (w/ \text{ equality if } \mu > 0) \ge \sum \pi_s(\tilde{x})v(w_s) - C(\tilde{x})$

Joseph Tao-yi Wang Principal-Agent Problem

Risk Neutral Principal vs. Risk Averse Agent²³

$$w_s :- \pi_s(\overline{x})u'(y_s - w_s) + (\lambda + \mu)\pi_s(\overline{x})v'(w_s) - \mu\pi_s(\tilde{x})v'(w_s) \le 0 \text{ (w/ equality if } w_s > 0)$$

• If
$$w_s > 0$$
, $\frac{u'(y_s - w_s)}{v'(w_s)} = (\lambda + \mu) - \mu \frac{\pi_s(\tilde{x})}{\pi_s(\overline{x})}, \tilde{x} < \overline{x}$

- Risk Neutral Principal vs. Risk Averse Agent:

$$u'(y_s - w_s) = 1, v(w_s)$$
 concave

• FOC:

$$\frac{1}{v'(w_s)} = (\lambda + \mu) - \mu \frac{\pi_s(\tilde{x})}{\pi_s(\overline{x})}$$

Increasing in s?

Risk Neutral Principal vs. Risk Averse Agent ²⁴

• FOC:
$$\frac{1}{v'(w_s)} = (\lambda + \mu) - \mu \frac{\pi_s(\tilde{x})}{\pi_s(\overline{x})}, \tilde{x} < \overline{x}$$

- Monotone Likelihood Ratio Property required so w_s^* is increasing in $s: \frac{\pi_s(\overline{x})}{\pi_s(\tilde{x})} > 0$, for $\overline{x} > \tilde{x}$
- IR/IC Constraints Bind: $\lambda : U_A(\overline{x}, w) = \sum \pi_s(\overline{x})v(w_s) - C(\overline{x}) = \overline{U}_A$ $\mu : \sum \pi_s(\overline{x})v(w_s) - C(\overline{x}) = \sum \pi_s(\tilde{x})v(w_s) - C(\tilde{x})$ $U_A(\overline{x}, w) = U_A(\tilde{x}, w)$