Consumer Choice with N Commodities

Joseph Tao-yi Wang 2013/9/27

(Lecture 6, Micro Theory I)

From 2 Goods to N Goods...

- More applications of tools learned before...
- Questions we ask: What is needed to...

1. Obtain the compensated law of demand?
2. Have a concave minimized expenditure function?
3. Recover consumer's demand?
4. "Use" a representative agent (in macro)?

Key Problems to Consider

- Revealed Preference: Only assumption needed:
- Compensated Law of Demand
- Concave Minimized Expenditure Function
- Indirect Utility Function: (The Maximized Utility)
- Roy's Identity: Can recover demand function from it
- Homothetic Preferences: (Revealed Preference)
- Demand is proportional to income
- Utility function is homogeneous of degree 1
- Group demand as if one representative agent

Why do we care about this?

- Three separate questions:

1. How general can revealed preference be?
2. How do we back out demand from utility maximization?
3. When can we aggregate group demand with a representative agent (say in macroeconomics)?

- Are these convincing?

Proposition 2.3-1 Compensated Price Changes

Consider the dual consumer problem

$$
M\left(p, U^{*}\right)=\min _{x}\left\{p \cdot x \mid U(x) \geq U^{*}\right\}
$$

For x^{0} be expenditure minimizing for prices p^{0}
x^{1} be expenditure minimizing at prices p^{1}
x^{0}, x^{1} satify $U(x) \geq U^{*}$
\Rightarrow compensated price change is $\Delta p \cdot \Delta x \leq 0$

Proposition 2.3-1 Compensated Price Change

Proof:

$$
p^{0} \cdot x^{0} \leq p^{0} \cdot x^{1}, \quad p^{1} \cdot x^{1} \leq p^{1} \cdot x^{0}
$$

Since x^{0} be expenditure minimizing for prices p^{0} x^{1} be expenditure minimizing at prices p^{1}

$$
\Rightarrow-p^{0} \cdot\left(x^{1}-x^{0}\right) \leq 0, \quad p^{1} \cdot\left(x^{1}-x^{0}\right) \leq 0
$$

$$
\Rightarrow \Delta p \cdot \Delta x=\left(p^{1}-p^{0}\right) \cdot\left(x^{1}-x^{0}\right) \leq 0
$$

Proposition 2.3-1 Compensated Price Change

- This is true for any pair of price vectors
- For $p^{0}=\left(\bar{p}_{1}, \cdots, \bar{p}_{j-1}, p_{j}^{0}, \bar{p}_{j+1}, \cdots, \bar{p}_{n}\right)$

$$
p^{1}=\left(\bar{p}_{1}, \cdots, \bar{p}_{j-1}, p_{j}^{1}, \bar{p}_{j+1}, \cdots, \bar{p}_{n}\right)
$$

- We have the (compensated) law of demand:

$$
\Delta p_{j} \cdot \Delta x_{j} \leq 0
$$

- Note that we did not need differentiability to get this, just revealed preferences!!
- But if differentiable, we have $\frac{\partial x_{j}^{c}}{\partial p_{j}} \leq 0$

1st \& 2nd Derivatives of Expenditure Functions

But what is $\frac{\partial x_{j}^{c}}{\partial p_{p}}$?
Consider the dual problem as a maximization:

$$
-M\left(p, U^{*}\right)=\max _{x}\left\{-p \cdot x \mid U(x) \geq U^{*}\right\}
$$

Lagrangian is $\mathfrak{L}=-p \cdot x+\lambda\left(U(x)-U^{*}\right)$
Envelope Theorem yields $-\frac{\partial M}{\partial p_{j}}=\frac{\partial \mathfrak{L}}{\partial p_{j}}=-x_{j}^{c}$
$\Rightarrow \frac{\partial}{\partial p_{i}}\left(\frac{\partial M}{\partial p_{j}}\right)=\frac{\partial x_{j}^{c}}{\partial p_{i}}$

1st \& 2nd Derivatives of Expenditure Function

Hence, compensated law of demand yields

$$
\frac{\partial x_{j}^{c}}{\partial p_{j}}=\frac{\partial^{2} M}{\partial p_{j}^{2}} \leq 0
$$

\Rightarrow Expenditure function concave for each p_{j}.
Is the entire Expenditure function concave?
Requires the matrix of second derivatives

$$
\left[\frac{\partial^{2} M}{\partial p_{i} \partial p_{j}}\right]=\left[\frac{\partial x_{j}^{c}}{\partial p_{i}}\right] \text { to be negative semi-definite }
$$

Prop. 2.3-2 Concave Expenditure Function

$M\left(p, U^{*}\right)$ is a concave function over p.
i.e. For any p^{0}, p^{1},

$$
M\left(p^{\lambda}, U^{*}\right) \geq(1-\lambda) M\left(p^{0}, U^{*}\right)+\lambda M\left(p^{1}, U^{*}\right)
$$

We can show this with only revealed preferences... (even without assuming differentiability!)

Prop. 2.3-2 Concave Expenditure Function

Proof: For x^{λ} that solves $M\left(p^{\lambda}, U^{*}\right)$, (feasible!)

$$
\begin{aligned}
M\left(p^{0}, U^{*}\right) & =p^{0} \cdot x^{0} \leq p^{0} \cdot x^{\lambda} \\
M\left(p^{1}, U^{*}\right) & =p^{1} \cdot x^{1} \leq p^{1} \cdot x^{\lambda}
\end{aligned}
$$

Since $M\left(p, U^{*}\right)$ minimizes expenditure.
Hence,

$$
\begin{aligned}
& (1-\lambda) M\left(p^{0}, U^{*}\right)+\lambda M\left(p^{1}, U^{*}\right) \\
\leq & {\left[(1-\lambda) p^{0} \cdot x^{\lambda}\right]+\left[\lambda p^{1} \cdot x^{\lambda}\right] } \\
= & p^{\lambda} \cdot x^{\lambda}=M\left(p^{\lambda}, U^{*}\right)
\end{aligned}
$$

What Have We Learned?

- Method of Revealed Preferences
- Used it to obtain:

1. Compensated Price Change
2. Compensated Law of Demand
3. Concave Expenditure Function

- Special Case assuming differentiability
- Next: How can we get demand from utility?

Indirect Utility Function

Let demand for consumer $U(\cdot)$ with income I, facing price vector p be $x^{*}=x(p, I)$.

$$
\begin{aligned}
V(p, I) & =\max _{x}\{U(x) \mid p \cdot x \leq I, x \geq 0\} \\
& =U\left(x^{*}(p, I)\right)
\end{aligned}
$$

is maximized $U(x)$, aka indirect utility function
Why should we care about this function?

Proposition 2.3-3 Roy's Identity

$$
x_{j}^{*}(p, I)=-\frac{\frac{\partial V}{\partial p_{j}}}{\frac{\partial V}{\partial I}}
$$

Get this directly from indirect utility function...

Joseph Tao-yi Wang Consumer Choice with N Goods

Proposition 2.3-3 Roy's Identity

Proof:

$$
V(p, I)=\max _{x}\{U(x) \mid p \cdot x \leq I, x \geq 0\}
$$

Lagrangian is $\mathfrak{L}(x, \lambda)=U(x)+\lambda(I-p \cdot x)$
Envelope Theorem yields $\frac{\partial V}{\partial I}=\frac{\partial \mathfrak{L}}{\partial I}\left(x^{*}, \lambda^{*}\right)=\lambda^{*}$

$$
\text { And } \begin{aligned}
\frac{\partial V}{\partial p_{j}} & =\frac{\partial \mathfrak{L}}{\partial p_{j}}\left(x^{*}, \lambda^{*}\right)=-\lambda^{*} x_{j}^{*}(p, I) \\
& \Rightarrow x_{j}^{*}(p, I)=-\frac{\frac{\partial V}{\partial p_{j}}}{\frac{\partial V}{\partial I}}
\end{aligned}
$$

Joseph Tao-yi Wang Consumer Choice with N Goods

Example: Unknown Utility...

Consider indirect utility function

$$
V(p, I)=\prod_{i=1}^{n}\left(\frac{\alpha_{i} I}{p_{i}}\right)^{\alpha_{i}} \text { where } \sum_{i=1}^{n} \alpha_{i}=1
$$

What's the demand (and original utility) function?

$$
\ln V=\ln I-\sum_{i=1}^{n} \alpha_{i} \ln p_{i}+\sum_{i=1}^{n} \alpha_{i} \ln \alpha_{i}
$$

$\Rightarrow \frac{\partial}{\partial I} \ln V=\frac{1}{V} \frac{\partial V}{\partial I}=\frac{1}{I}, \quad \frac{\partial}{\partial p_{i}} \ln V=\frac{1}{V} \frac{\partial V}{\partial p_{i}}=-\frac{\alpha_{i}}{p_{i}}$

Example: Unknown Utility...

$$
V(p, I)=\prod_{i=1}^{n}\left(\frac{\alpha_{i} I}{p_{i}}\right)^{\alpha_{i}} \text { where } \sum_{i=1}^{n} \alpha_{i}=1
$$

What's the demand (and original utility) function?

$$
\ln V=\ln I-\sum_{i=1}^{n} \alpha_{i} \ln p_{i}+\sum_{i=1}^{n} \alpha_{i} \ln \alpha_{i}
$$

$\Rightarrow \frac{\partial}{\partial I} \ln V=\frac{1}{V} \frac{\partial V}{\partial I}=\frac{1}{I}, \frac{\partial}{\partial p_{i}} \ln V=\frac{1}{V} \frac{\partial V}{\partial p_{i}}=-\frac{\alpha_{i}}{p_{i}}$ By Roy's Identity, $x_{i}^{*}=-\frac{\frac{\partial V}{\partial p_{j}}}{\frac{\partial V}{\partial I}}=\frac{\alpha_{i} I}{p_{i}}$

Example: Cobb-Douglas Utility

- Plugging back in

$$
U(x)=V=\prod_{i=1}^{n}\left(\frac{\alpha_{i} I}{p_{i}}\right)^{\alpha_{i}}=\prod_{i=1}^{n}\left(x_{i}\right)^{\alpha_{i}}
$$

- What is this utility function?
- Cobb-Douglas!
- Note: This is an example where demand is proportion to income. In fact, we have...

Definition: Homothetic Preferences

Strictly monotonic preference \succsim is homothetic if, for any $\theta>0$ and x^{0}, x^{1} such that $x^{0} \succsim x^{1}$,

$$
\theta x^{0} \succsim \theta x^{1}
$$

In fact, if $x^{0} \sim x^{1}$,
Then, $\theta x^{0} \sim \theta x^{1}$

Why Do We Care About This?

- Proposition 2.3-4:
- Demand proportional to income
- Proposition 2.3-5:
- Homogeneous functions represent homothetic preferences
- Proposition 2.3-6:
- Homothetic preferences are represented by functions that are homogeneous of degree 1
- Proposition 2.3-7: Representative Agent

Prop. 2.3-4: Demand Proportional to Income

If preferences are homothetic, and x^{*} is optimal given income I, Then θx^{*} is optimal given income θI.
Proof:
Let $x^{* *}$ be optimal given income θI, Then $x^{* *} \succsim \theta x^{*}$ since θx^{*} is feasible with θI.
By revealed preferences, $x^{*} \succsim \frac{1}{\theta} x^{* *}\left(\frac{1}{\theta} x^{* *}\right.$ feasible $)$
By homotheticity, $\theta x^{*} \succsim x^{* *}$
Thus, $\theta x^{*} \sim x^{* *}$ (optimal for income θI)

Prop. 2.3-5: Homogeneous Functions $\boldsymbol{\rightarrow}$ Homothetic Prefi

If preferences are represented by $U(\lambda x)=\lambda^{k} U(x)$, Then preferences are homothetic.

Proof:
Suppose $x \succsim y$, Then $U(x) \geq U(y)$.
Since $U(x)$ is homogeneous,

$$
U(\lambda x)=\lambda^{k} U(x) \geq \lambda^{k} U(y)=U(\lambda y)
$$

Thus, $\lambda x \succsim \lambda y$ i.e. Preferences are homothetic.

Prop. 2.3-6: Representation of Homothetic Prefas

If preferences are homothetic,
They can be represented by a function that is homogeneous of degree 1 .

Proof: $\hat{e}=(1, \cdots, 1)$
For \hat{x}, exists $u \hat{e} \sim \hat{x}$ Utility function $U(x)=u$ By homotheticity,

$$
\lambda \hat{x} \sim(\lambda u) \hat{e}
$$

Hence, $U(\lambda \hat{x})=\lambda u=\lambda U(\hat{x})$

Proposition 2.3-7: Representative Preferences ${ }_{24}$

$$
\begin{aligned}
& x(p, I)=\arg \max _{x}\{U(x) \mid p \cdot x \leq I\}, U \text { homothetic } \\
& \quad \Rightarrow \sum_{h=1}^{H} x\left(p, I^{h}\right)=x\left(p, I^{R}\right), I^{R}=\sum_{h=1}^{H} I^{h}
\end{aligned}
$$

If a group of consumers have the same homothetic preferences,

Then group demand is equal to demand of a representative member holding all the income.

Proposition 2.3-7: Representative Preferences ${ }^{25}$

 $x(p, I)=\arg \max _{x}\{U(x) \mid p \cdot x \leq I\}, U$ homothetic$$
\Rightarrow \sum_{h=1}^{H} x\left(p, I^{h}\right)=x\left(p, I^{R}\right), I^{R}=\sum_{h=1}^{H} I^{h}
$$

Proof: $\quad x(p, 1)=\arg \max _{x}\{U(x) \mid p \cdot x \leq 1\}$

$$
\begin{aligned}
U \text { homothetic } & \Rightarrow x\left(p, I^{h}\right)=I^{h} x(p, 1) \\
\Rightarrow \sum_{h=1}^{H} x\left(p, I^{h}\right) & =\sum_{h=1}^{H} I^{h} x(p, 1)=I^{R} x(p, 1) \\
& =x\left(p, I^{R}\right) \text { by homotheticity }
\end{aligned}
$$

Summary of 2.3

- Revealed Preference:
- Compensated Law of Demand
- Concave Minimized Expenditure Function
- Indirect Utility Function:
- Roy's Identity: Recovering demand function
- Homothetic Preferences:
- Demand is proportional to income
- Utility function is homogeneous of degree 1
- Group demand as if one representative agent
- Homework: (Optional: Exercise 2.3-3)

Homework: 2008 Midterm Q2- Roy's Identity ${ }^{21}$

1. Draw their income expansion path for two consumers, A and B, with utility functions:

$$
u_{A}\left(x_{1}^{A}, x_{2}^{A}\right)=-\frac{A_{1}}{x_{1}^{A}}-\frac{A_{2}}{x_{2}^{A}} \text { if } x_{1}^{A} \cdot x_{2}^{A}>0
$$

$$
u_{B}\left(x_{1}^{B}, x_{2}^{B}\right)=\min \left\{2 x_{1}^{B}, 3 x_{2}^{B}\right\}
$$

2. Derive the indirect utility function $V_{i}(p, I)$ - Can you use the Roy's Identity to derive each consumer's demand? Why or why not?
3. Derive $x_{i}^{h^{*}}(p, I)$, consumer h 's demand functions for consumer h and commodity i

In-Class Homework: RPP and Exercise 2.3-1

Consider firm problem $\Pi(p)=\max _{y}\left\{p \cdot y \mid y \in \mathcal{Y}^{f}\right\}$ For y^{0} be profit maximizing for prices p^{0}
y^{1} be profit maximizing at prices p^{1}

$$
y^{0}, y^{1} \in \mathcal{Y}^{f} \quad \Rightarrow \Delta p \cdot \Delta y \leq 0
$$

$$
U(x)=\times_{j=1}^{n} x_{j}^{\alpha_{j}}, \alpha_{1}+\cdots+\alpha_{n}=1
$$

a) Solve for the indirect utility function $V_{i}(p, I)$
b) Explain why you can "invert" your results to obtain the expenditure function
c) Hence solve for the Expenditure Function Joseph Tao-yi Wang Consumer Choice with N Goods

In-Class Homework: Exercise 2.3-2

- Bev has a utility function $U(x)=\sqrt{x_{1} x_{2}}+x_{3}$
a) Suppose she allocates y towards the purchase of commodity 1 and 2 and purchases x_{3} units of commodity 3. Show that her resulting utility is

$$
U^{*}\left(x_{3}, y\right)=\frac{y}{2 \sqrt{p_{1} p_{2}}}+x_{3}
$$

b) Given this preliminary optimization problem has been solved, her budget constraint is $p_{3} x_{3}+y \leq I$ Solve for her optimizing values of x_{3} and y.

- Under what conditions, if any, is she strictly worse off if she is told that she can consume at most 2 of the 3 available commodities?

