Refinements of Bayesian Nash Equilibrium

$$
\begin{gathered}
\text { Joseph Tao-yi Wang } \\
12 / 27 / 2012
\end{gathered}
$$

(Lecture 11, Micro Theory I)

Market Entry Game w/ Incomplete Information

 Example of many BNE; some are less plausible than others: If Entrant's backing is weakAgent 2: Incumbent

Fight
Agent 1:
Entrant

Out

Share

Market Entry Game w/ Incomplete Information

If Entrant's backing is strong
Agent 2: Incumbent

Fight
Agent 1:
Entrant

Out

Share

Market Entry Game w/ Incomplete Information

Joseph Tao-yi Wang Refinements of BNE

Market Entry Game w/ Incomplete Information

 Information Sets$(0,60)$

Joseph Tao-yi Wang Refinements of BNE

BNE if Player 2 Chooses Share

$(0,60)$

BNE is (Enter, Share)

$$
\text { Fight }(-1,29)
$$

strong

Out Enter 2 Share $(3,30)$

$(0,60)$

BNE if Player 2 Chooses Share: Player 1's BR

 $U_{1}($ Enter $)=p u_{1 W}($ Enter, Share $)$$(0,60)$

$$
+(1-p) u_{1 S}(\text { Enter, Share })=3
$$

Out Enter 2 Fight $(-2,40)$
Share $(3,30)$
Fight $(-1,29)$ strong

Out Enter 2 Share $(3,30)$
$(0,60) \quad$ Since $U_{1}(O u t)=0$, Enter is BR
Joseph Tao-yi Wang Refinements of BNE

BNE if Player 2 Chooses Share: Player 2's BR

 $U_{2}($ Fight $)-U_{2}($ Share $)=(29+11 p)-30$$(0,60)$

$$
=11 p-1
$$

Out Enter 2 Fight $(-2,40)$
Share $(3,30)$
Fight $(-1,29)$
N
strong
Out Enter 2 Share $(3,30)$
$(0,60) \quad$ Share is BR if and only if $p \leq 1 / 11$
Joseph Tao-yi Wang Refinements of BNE

BNE if Player 2 Chooses Share

$(0,60)$

\section*{BNE is (Enter, Share)} | Out | Enter 2 | Fight | |
| :---: | :--- | :--- | :--- |
| ($-2,40)$ | | | |
| weak | (action of 1, | | |
| | | Share | $(3,30)$ |

N strong

Fight (-1,29)
Out Enter 2 Share $(3,30)$

$(0,60)$

Joseph Tao-yi Wang Refinements of BNE

BNE if Player 2 Chooses Fight

$(0,60)$

BNE is (Out, Fight)

Out Enter 2 Fight $(-2,40)$ (action of 1, weak $1 /$ Share $(3,30)^{\text {action if Enter })}$

$$
\text { Fight }(-1,29)
$$

Out Enter 2 Share $(3,30)$

$(0,60)$

BNE if Player 2 Chooses Fight: Player 1's BR

$U_{1}($ Enter $)=p u_{1 W}($ Enter, Fight $)$
$(0,60)$

$$
+(1-p) u_{1 S}(\text { Enter }, \text { Fight })<0
$$

Out \uparrow Enter 2 Fight $(-2,40)$
weak $1 / p$ Share $(3,30)$

$$
\text { Fight }(-1,29)
$$

strong
Out \downarrow Enter 2 Share $(3,30)$
$(0,60) \quad$ Since $U_{1}($ Out $)=0$, Out is BR
Joseph Tao-yi Wang Refinements of BNE

BNE if Player 2 Chooses Fight: Player 2's BR

$(0,60)$

Out Enter 2 Share $(3,30)$
$(0,60) \quad$ Fight is BR (but never "tested")
Joseph Tao-yi Wang Refinements of BNE

BNE if Player 2 Chooses Fight

$(0,60)$

BNE is (Out, Fight)

Out Enter 2 Fight $(-2,40)$ (action of 1, weak $1 /$ Share $(3,30)^{\text {action if Enter })}$

$$
\text { Fight }(-1,29)
$$

Out Enter 2 Share $(3,30)$

$(0,60)$

Empty Threats Off the Equilibrium Path

- Not a "Sensible" Equilibrium...
- If $p \leq 1 / 11$, Incumbent wouldn't want to Fight
- Not SPE when $p=0$
- Problem due to "crazy" beliefs that are:
- Off the Equilibrium Path: nodes that are not reached in equilibrium
- Not reached $=$ Zero probability (discrete types only)
- On the Equilibrium Path: nodes that are reached in equilibrium

Perfect Bayesian Equilibrium

- A BNE is a Perfect Bayesian Equilibrium (PBE) if at all nodes off the equilibrium path, there are strategies and beliefs consistent with Bayes' Rule such that the strategies (both on and off the equilibrium path) are BR
- When $p<1 / 11$, (Out, Fight) is not a PBE since when Enter occurs (off-equilibrium path), Fight is only a BR if $p \geq 1 / 11$.

Trembling-Hand Perfect Equilibrium

- To rule out "crazy" equilibrium, can perturb the BNE by making them totally mixed:
- Consider a game with T stages
- Set of feasible actions at stage t is A_{t} (finite)
- For the BNE $\bar{\pi}=\left(\bar{\pi}_{1}, \cdots, \bar{\pi}_{T}\right)$
- Consider a sequence of totally mixed strategies (sequence of trembles) $\left\{\pi^{k}\right\}_{k=1}^{\infty} \rightarrow \bar{\pi}$
- All nodes are reached (and tested in the BNE)
- No more "crazy" beliefs off the equilibrium path...

Trembling-Hand Perfect Equilibrium

- A BNE $\bar{\pi}$ is Trembling-Hand Perfect (THP) if
- There exists some sequence of totally mixed strategy profiles $\left\{\pi^{k}\right\}_{k=1}^{\infty} \rightarrow \bar{\pi}$
- (Converging to the equilibrium strategies) such that
- For all sufficiently large k, the equilibrium strategies are $\mathrm{BR}: \quad \bar{\pi}_{i}=\arg \max _{\pi_{i}} U_{i}\left(\pi_{i}, \pi_{-i}^{k}\right)$
- Note: If a sequence of Logit-QRE converges to a BNE, would the BNE automatically be THP? - QRE solves this by construct (already totally mixed...)

BNE if Player 2 Chooses Fight: Not THP

For all $\left\{\pi^{k}\right\}_{k=1}^{\infty}$, Enter with error probability ϵ_{1}^{k} $(0,60) U_{2}($ Fight $)-U_{2}($ Share $)=(29+11 p)-30$
Out \mid Enter 2 Fight $(-2,40)=11 p-1$

$$
\text { Fight }(-1,29)
$$

Enter 2 Share $(3,30)$
$(0,60)$ If $p \leq 1 / 11$, Fight is not BR when Enter

BNE if Player 2 Chooses Share: Indeed THP

 For all $\left\{\pi^{k}\right\}_{k=1}^{\infty}$,$(0,60) \quad$ Fight with error probability ϵ_{2}^{k}
Out \mid Enter 2 Fight $(-2,40)$ $U_{1}($ Enter $)$
Share $(3,30)=3\left(1-\epsilon_{2}^{k}\right)$
Fight $(-1,29)$
$-\epsilon_{2}^{k}-p \epsilon_{2}^{k}$
strong
1

Sequential Equilibrium

- A BNE is a sequential equilibrium if
- Each strategy at each node is a BR
- When beliefs at each node are the limits of beliefs associated with trembles as the probability of trembles $\rightarrow 0$
- Note: THP \rightarrow SE

Market Entry Game with Private Information

$(0,6)$

Joseph Tao-yi Wang Refinements of BNE

BNE when $p<5 / 6$: (Enter, Enter, Share)

$(0,6)$

BNE is $\xrightarrow[\text { (Enter, Enter, Share) }]{\text { (} 2,4)}$

Out Enter 2 Fight $(-2,4)$ (action if weak,
weak
N strong $1-p$ Share $(3,3)$ action if strong, action if Enter)

$$
\text { Fight }(4,-2)
$$

Out Enter 2 Share $(3,3)$
$(0,6)$
Joseph Tao-yi Wang Refinements of BNE

BNE when $p<5 / 6$: (Enter, Enter, Share)

 $U_{1}($ Enter \mid weak $)=U_{1}($ Enter \mid strong $)=3$ $(0,6)$

N	
strong $1-p$	Fight $(4,-2)$

Out Enter 2 Share $(3,3)$
$(0,6) \quad$ Since $U_{1}($ Out $\mid \cdot)=0, \underline{\text { Enter is BR }}$
Joseph Tao-yi Wang Refinements of BNE

BNE when $p<5 / 6$: (Enter, Enter, Share)

$$
U_{2}(\text { Enter }, \text { Fight })=4 p-2(1-p)=6 p-2
$$

$(0,6) \quad U_{2}($ Enter, Share $)=3$

No
Information
Fight (4,-2) Update!
Share $(3,3)$

Out Enter 2 Share $(3,3)$
$(0,6)$
Share is BR if $p<5 / 6$

Joseph Tao-yi Wang Refinements of BNE

BNE when $p<5 / 6$: (Enter, Enter, Share)

$(0,6)$

BNE is (Enter, Enter, Share)

Out Enter 2 Fight (-2,4) (action if weak,
weak
N strong $1-p$ Share $(3,3)$ action if strong, action if Enter)

Fight $(4,-2) \quad$ But (Enter,

 Enter, Share) is no longer an equilibrium if$$
p>5 / 6!!
$$

Joseph Tao-yi Wang Refinements of BNE

BNE when $p>5 / 6$: (strong Enter; Others Mix)

 BNE is $(\operatorname{Pr}($ Enter $)=\alpha$, Enter, $\operatorname{Pr}($ Fight $)=\beta)$ $(0,6)$ (action if weak,
weak p
N strong $1-p$ Share $(3,3)$ action if strong, 1 - β action if Enter) Fight $_{\beta}(4,-2)$

Out $\underset{(0,6)}{ }$ Enter 2 Share $(3,3)$

Joseph Tao-yi Wang Refinements of BNE

BNE when $p>5 / 6$: (strong Enter; Others Mix)

$\operatorname{Pr}\{$ strong \mid Enter $\}=\frac{\text { Pr }\{\text { strong, Enter }\}}{\operatorname{Pr}\{\text { strong }, \text { Enter }\}+\operatorname{Pr}\{\text { weak }, \text { Enter }\}}$

Joseph Tao-yi Wang Refinements of BNE

BNE when $p>5 / 6$: (strong Enter; Others Mix)

$$
U_{2}(\text { Fight })=(1-q) \cdot 4-q \cdot 2
$$

Joseph Tao-yi Wang Refinements of BNE

BNE when $p>5 / 6$: (strong Enter; Others Mix)
$U_{1}($ Enter \mid weak $)=\beta \cdot(-2)+(1-\beta) \cdot 3$

Joseph Tao-yi Wang Refinements of BNE

BNE when $p>5 / 6$: (strong Enter; Others Mix)

 If $\beta=\frac{3}{5}, U_{1}($ Enter \mid strong $)=\beta \cdot 4+(1-\beta) \cdot 3$$(0,6) \quad=3+\beta>U_{1}($ Out \mid strong $)=0$

$1-\beta$

N	
strong $1-p$	Fight $\beta(4,-2)$

Player 1 will Enter if strong
Joseph Tao-yi Wang Refinements of BNE

BNE when $p>5 / 6$: (strong Enter; Others Mix)

Joseph Tao-yi Wang Refinements of BNE

Modified Market Entry Game: New Payoffs...

$(0,6)$

Joseph Tao-yi Wang Refinements of BNE

Separating Equilibrium: strong-Enter, weak-Out

$(0,6)$
Out \uparrow Enter 2 Fight $(-6,5)$ (action if weak, $_{\text {a }}$,
weak $p \quad$ Share $^{\longrightarrow}(-1,4$ BNE is (Out, Enter, Share)

N strong $1-p$ Fight (-1,-6)

Out Enter 2 Share ${ }^{\lambda 1}(4,1)$

$(0,6)$

Joseph Tao-yi Wang Refinements of BNE

Separating Equilibrium: strong-Enter, weak-Out

$$
\overline{U_{1}}(\text { Enter } \mid \text { weak })=-1
$$

$(0,6)$ $<U_{1}($ Out \mid weak $)=0$
Out \uparrow Enter 2 Fight $(-6,5)$
weak p Share $(-1,4)$

N	
strong $1-p$	Fight

Out Enter 2 Share $(4,1)$
$(0,6) \quad$ Player 1 stays Out if weak
Joseph Tao-yi Wang Refinements of BNE

Separating Equilibrium: strong-Enter, weak-Out

$U_{1}($ Enter \mid strong $)=4$

$(0,6)$

| Out |
| :---: | :---: |
| weak | $\mathrm{p}_{\mathrm{p}} \quad$ Enter 2 Fight $(-6,5)$

N	
strong $1-p$	Fight

Out Enter 2 Share $(4,1)$
$(0,6)$
Player 1 Enters if strong
Joseph Tao-yi Wang Refinements of BNE

Separating Equilibrium: strong-Enter, weak-Out

Joseph Tao-yi Wang Refinements of BNE

Separating Equilibrium: strong-Enter, weak-Out

$(0,6) \quad U_{2}($ Share $)=1>U_{2}($ Fight $)=-6$
Out Enter 2 Fight (-6,5)
weak $p>$ Share $(-1,4)$

N	
strong $1-p$	Fight

Out Enter 2 Share $(4,1)$
$(0,6)$
Player 2 will Share
Joseph Tao-yi Wang Refinements of BNE

Separating Equilibrium: strong-Enter, weak-Out

$(0,6)$

BNE is (Out,Enter, Share)
 (action if weak, Share $(-1,4)$ action if strong, action if Enter) Fight (-1,-6)
$\operatorname{Pr}\{$ strong \mid Enter $\}=$
Out ${ }_{(0,6)}$
Enter 2 Share $(4,1)$

$$
\frac{\operatorname{Pr}\{\text { strong, Enter }\}}{\operatorname{Pr}\{\text { strong, Enter }\}+\operatorname{Pr}\{\text { weak }, \text { Enter }\}}=1
$$

Joseph Tao-yi Wang Refinements of BNE

(strong-Enter; weak-Out) is also Sequential!

Joseph Tao-yi Wang Refinements of BNE

Pooling Equilibrium: (Out, Out, Fight)

$(0,6)$
Out \uparrow Enter 2 Fight $(-6,5) 】$ (action if weak, weak
N strong $1-p$ BNE is (Out, Out, Fight)

Pooling Equilibrium: (Out, Out, Fight)

$(0,6)$
$>U_{1}($ Enter \mid weak $)=-6$
Out \uparrow Enter 2 Fight ($-6,5$)
weak $1 / p$ Share $(-1,4)$

Out Enter 2 Share $(4,1)$
$(0,6) \quad$ Player 1 stays Out if weak
Joseph Tao-yi Wang Refinements of BNE

Pooling Equilibrium: (Out, Out, Fight)

$U_{1}($ Out \mid strong $)=0$
$(0,6)$

$$
>U_{1}(\text { Enter } \mid \text { strong })=-1
$$

Out Enter 2 Fight $(-6,5)$

N 友 $1-p$	Fight
strong	$(-1,-6)$

Out \downarrow Enter 2 Share $(4,1)$
$(0,6)$
Player 1 stays Out if strong
Joseph Tao-yi Wang Refinements of BNE

Pooling Equilibrium: (Out, Out, Fight)

If Player 2 believes that $\operatorname{Pr}\{$ weak $\mid E n t e r\}=\frac{1}{1+\theta}$ $(0,6)$

Joseph Tao-yi Wang Refinements of BNE

Pooling Equilibrium: (Out, Out, Fight)

$(0,6)$
BNE is (Out,Out, Fight)
Out \uparrow Enter 2 Fight ${ }^{(-6,5)}$ (action if weak, Share - $(-1,4)$ action if strong, action if Enter)

$$
\text { Fight }>(-1,-6)
$$

Out \downarrow Enter 2 Share $(4,1)$
$(0,6) \quad$ (Player 2's "crazy" belief never tested)
Joseph Tao-yi Wang Refinements of BNE

(Out, Out, Fight) is also a Sequential Equil.!

Joseph Tao-yi Wang Refinements of BNE

(Out, Out, Fight) is also a Sequential Equil.!

- (Out, Out, Fight) is not ruled out by THP, and hence, is also a Sequential Equilibrium...
- But why can't the strong type say,
- "If I enter, I will be credibly signaling that I am strong, since if I were weak and chose to Enter, my possible payoffs would be -1 or -6 , smaller than 0 (equilibrium payoff if weak).'
- Seeing this, player 2's BR is Share
- Profitable for strong player 1 to Enter \& signal...

(Weak) Intuitive Criterion (Cho and Kreps)

- For first move player 1's action \hat{a} (not in PBE)
- Let $u_{1}\left(\hat{a}, \theta, \theta^{\prime}\right)$ be player i^{\prime} 's payoff as type $\theta \in \Theta$
- if he chooses \hat{a} but is believed to be type $\theta^{\prime} \in \Theta$
- Let $u^{N}(\theta)$ be this types' PBE payoff
- The PBE fails the (Weak) Intuitive Criterion if, for some player 1 of type $\hat{\theta} \in \Theta$,

$$
u_{1}(\hat{a}, \hat{\theta}, \hat{\theta})>u_{1}^{N}(\hat{\theta})
$$

- And, for all other types $\theta \in \Theta$, (can't signal)

$$
\max _{x \in \Theta} u_{1}(\hat{a}, \theta, x)<u_{1}^{N}(\theta)
$$

Joseph Tao-yi Wang Refinements of BNE

(Strong) Intuitive Criterion (for 3+ types)

- For first move player 1's action \hat{a} (not in PBE)
- Let $u_{1}\left(\hat{a}, \theta, \theta^{\prime}\right)$ be player i^{\prime} 's payoff as type $\theta \in \Theta$
- if he chooses \hat{a} but is believed to be type $\theta^{\prime} \in \Theta$
- Let $u_{1}^{N}(\theta)$ be this types' PBE payoff
- The PBE fails the (Strong) Intuitive Criterion if, for some player 1 of type $\hat{\theta} \in \Theta$,

$$
u_{1}(\hat{a}, \hat{\theta}, \hat{\theta})>u_{1}^{N}(\hat{\theta})
$$

- And, for all other types $\theta \in \Theta$, (can't mimic)

$$
u_{1}(\hat{a}, \theta, \hat{\theta})<u_{1}^{N}(\theta)
$$

Joseph Tao-yi Wang Refinements of BNE

Intuitive Criterion (Cho and Kreps)

- IC: I can credibly signal that I am high type - Cause I gain (against PBE) if you believe me, and
- Weak IC: Nobody else can make similar claims
- Not only this claim, but any similar claim
- Stronger requirement of failure $=$ weaker criterion
- Strong IC: Nobody else can make this claim
- Weaker requirement of failure $=$ stronger criterion
- With only two types, weak and strong IC are the same...

Intuitive Criterion (Cho and Kreps)

- In the previous Example,
- (Out, Out, Fight) fails the Intuitive Criterion
- "If I enter, I will be credibly signaling that I am strong, since I gain if you believe me and if I were weak and chose to Enter, my possible payoffs would be -1 or -6 , smaller than 0 (PBE payoff if weak)."
- (Out, Enter, Share) meets Intuitive Criterion
- Such argument is not credible...

Summary of 10.2

- "SPE" under incomplete information: PBE - Two special cases: SE and THP
- Different Types of PBE:
- Pooling Equilibrium
- Separating Equilibrium
- Semi-Pooling Equilibrium (MSE)
- Intuitive Criteria
- HW 10.2: See handout

