Games of Incomplete Information（資訊不全賽局）
 Joseph Tao－yi Wang 2012／12／13

（Lecture 9，Micro Theory I）

Simultaneous Move Games - An Example

- One or more players know preferences only probabilistically (cf. Harsanyi, 1976-77)
- Cournot Duopoly Game (with private costs)
- Firm $i \in \mathfrak{I}$ of Type $\theta_{i} \in \Theta_{i}=\left\{\theta_{i 1}, \cdots, \theta_{i m_{i}}\right\}$
- Two firms; firm i of type θ_{i} has unit cost: $c\left(\theta_{i}\right)$ - Private information: Know own cost only...
- Choose output q_{i}; market clearly price is:

$$
p(q)=a-q_{1}-q_{2}
$$

Simultaneous Move Games - An Example

- For output vector q, firm i 's profit is

$$
u_{i}\left(q_{i}, q_{-i}, \theta_{i}\right)=\left(a-q_{i}-q_{-i}-c\left(\theta_{i}\right)\right) \cdot q_{i}
$$

- Not knowing other's type, firms maximizes

$$
\begin{aligned}
U_{i}\left(q_{i}, \theta_{i}\right) & =\underset{q_{-i}}{\mathrm{E}}\left\{u_{i}\left(q_{i}, q_{-i}, \theta_{i}\right)\right\} \\
& =\left(a-q_{i}-E\left\{q_{-i}\right\}-c\left(\theta_{i}\right)\right) \cdot q_{i}
\end{aligned}
$$

- Optimal quantity is

$$
q_{i}\left(\theta_{i}\right)=\arg \max _{q_{i}}\left\{U_{i}\left(q_{i}, \theta_{i}\right)\right\}
$$

Simultaneous Move Games - An Example

- FOC is both necessary and sufficient since U_{i} is strictly concave
$\frac{\partial U_{i}}{\partial q_{i}}=a-E\left\{q_{-i}\right\}-c\left(\theta_{i}\right)-2 q_{i}=0, \quad i=1,2$.
- Therefore,

$$
q_{i}^{B R}\left(\theta_{i}\right)=\frac{1}{2}\left(a-E\left\{q_{-i}\right\}-c\left(\theta_{i}\right)\right), \quad i=1,2 .
$$

- Note this depends on beliefs about others!

Simultaneous Move Games - An Example

- One or more players know preferences only probabilistically (cf. Harsanyi, 1976-77)
- Cournot Duopoly Game (with private costs)
- Firm $i \in \mathfrak{I}$ of Type $\theta_{i} \in \Theta_{i}=\left\{\theta_{i 1}, \cdots, \theta_{i m_{i}}\right\}$
- Two firms; firm i of type θ_{i} has unit cost: $c\left(\theta_{i}\right)$ - Private information: Know own cost only...
- Choose output q_{i}; market clearly price is:

$$
p(q)=a-q_{1}-q_{2}
$$

Simultaneous Move Games - An Example

- For output vector q, firm i 's profit is

$$
u_{i}\left(q_{i}, q_{-i}, \theta_{i}\right)=\left(a-q_{i}-q_{-i}-c\left(\theta_{i}\right)\right) \cdot q_{i}
$$

- Not knowing other's type, firms maximizes

$$
\begin{aligned}
U_{i}\left(q_{i}, \theta_{i}\right) & =\underset{q_{-i}}{\mathrm{E}}\left\{u_{i}\left(q_{i}, q_{-i}, \theta_{i}\right)\right\} \\
& =\left(a-q_{i}-E\left\{q_{-i}\right\}-c\left(\theta_{i}\right)\right) \cdot q_{i}
\end{aligned}
$$

- Optimal quantity is

$$
q_{i}\left(\theta_{i}\right)=\arg \max _{q_{i}}\left\{U_{i}\left(q_{i}, \theta_{i}\right)\right\}
$$

Simultaneous Move Games - An Example

- FOC is both necessary and sufficient since U_{i} is strictly concave
$\frac{\partial U_{i}}{\partial q_{i}}=a-E\left\{q_{-i}\right\}-c\left(\theta_{i}\right)-2 q_{i}=0, \quad i=1,2$.
- Therefore,

$$
q_{i}^{B R}\left(\theta_{i}\right)=\frac{1}{2}\left(a-E\left\{q_{-i}\right\}-c\left(\theta_{i}\right)\right), \quad i=1,2 .
$$

- Note this depends on beliefs about others!

Simultaneous Move Games - An Example

$$
q_{i}^{B R}\left(\theta_{i}\right)=\frac{1}{2}\left(a-E\left\{q_{-i}\right\}-c\left(\theta_{i}\right)\right), \quad i=1,2
$$

- Firm 2's cost is known; firm 1's cost is private
- First-Order Belief: Suppose firm 2 believes firm 1's cost is higher than previous estimates
- Firm 2: $E\left\{q_{1}\right\}$ decreases; q_{2} increases
- Second-Order Belief: Suppose firm 1 believes firm 2 thinks 1's cost is higher than estimates
- Firm 1: $E\left\{q_{2}\right\}$ increases; q_{1} decreases

Simultaneous Move Games - An Example

$$
q_{i}^{B R}\left(\theta_{i}\right)=\frac{1}{2}\left(a-E\left\{q_{-i}\right\}-c\left(\theta_{i}\right)\right), \quad i=1,2
$$

- Third-Order Belief: Suppose firm 2 believes firm 1 believes that firm 2 thinks 1's cost is higher than previous estimates
- Firm 2: $E\left\{q_{1}\right\}$ decreases; q_{2} increases
- When does this cycle "end'?
- If there is Common Knowledge of Beliefs about Joint pdf $f\left(\theta_{1}, \cdots, \theta_{I}\right)$ over $\Theta=\underset{i \in \mathfrak{I}}{\times} \Theta_{i}$

Simultaneous Move Games - An Example

- Now assume types are iid (common knowledge)

$$
f\left(\theta_{1}, \theta_{2}\right)=g\left(\theta_{1}\right) g\left(\theta_{2}\right)
$$

- Want to find equilibrium pure strategy:

$$
q_{i}\left(\theta_{i}\right): \Theta_{i} \rightarrow A_{i}=\mathbb{R}_{+}
$$

- Compute expectation of BR:

$$
\begin{aligned}
q_{i}^{B R}\left(\theta_{i}\right) & =\frac{1}{2}\left(a-\underset{\theta_{-i}}{\mathrm{E}}\left\{q_{-i}\left(\theta_{-i}\right)\right\}-c\left(\theta_{i}\right)\right) \\
\mathrm{E}_{i}\left\{q_{i}^{B R}\left(\theta_{i}\right)\right\} & =\frac{1}{2}\left(a-\underset{\theta_{-i}}{\mathrm{E}}\left\{q_{-i}\left(\theta_{-i}\right)\right\}-\underset{\theta_{i}}{\mathrm{E}}\left\{c\left(\theta_{i}\right)\right\}\right)
\end{aligned}
$$

Simultaneous Move Games - An Example

- Identical cost functions \rightarrow Identical $\bar{c}=\underset{\theta_{i}}{\mathrm{E}}\left\{c\left(\theta_{i}\right)\right\}$
- Symmetric type distribution \rightarrow Symmetric Eq.

$$
\underset{\theta_{i}}{\mathrm{E}}\left\{q_{i}\left(\theta_{i}\right)\right\}=\frac{1}{2}\left(a-\underset{\theta_{-i}}{\mathrm{E}}\left\{q_{-i}\left(\theta_{-i}\right)\right\}-\bar{c}\right)=\frac{1}{3}(a-\bar{c})
$$

- So:

$$
\begin{aligned}
& q_{i}^{B R}\left(\theta_{i}\right)=\frac{1}{2}\left(a-\underset{\theta-i}{\mathrm{E}}\left\{q_{-i}\left(\theta_{-i}\right)\right\}-c\left(\theta_{i}\right)\right) \\
= & \frac{1}{2}\left(a-\frac{1}{3}(a-\bar{c})-c\left(\theta_{i}\right)\right)=\frac{1}{3} a+\frac{1}{6} \bar{c}-\frac{1}{2} c\left(\theta_{i}\right)
\end{aligned}
$$

Simultaneous Move Games - An Example

- Since $q_{i}^{B R}\left(\theta_{i}\right)=\frac{1}{3} a+\frac{1}{6} \bar{c}-\frac{1}{2} c\left(\theta_{i}\right)$
- Intuitively, ${ }_{q_{i}}{ }^{B R}\left(\theta_{i}\right)=\frac{1}{3}(a-\bar{c})-\frac{1}{2}\left(c\left(\theta_{i}\right)-\bar{c}\right)$

$$
=\underset{\theta_{i}}{\mathrm{E}}\left\{q_{i}^{B R}\right\}-\frac{1}{2}\left(c\left(\theta_{i}\right)-\bar{c}\right)
$$

- Demand is: $p(\theta)=a-q_{1}(\theta)-q_{2}(\theta)$

$$
=\frac{1}{3}(a-\bar{c})+\frac{1}{2}\left[c\left(\theta_{1}\right)+c\left(\theta_{2}\right)\right]
$$

- Expected Price: $\bar{p}=\frac{1}{3} a+\frac{2}{3} \bar{c}$

Simultaneous Move Games - General Case

- Player $i \in \mathfrak{I}$ has Type $\theta_{i} \in \Theta_{i}=\left\{\theta_{i 1}, \cdots, \theta_{i m_{i}}\right\}$
- Set of feasible Actions: A_{i}
- Set of all probability measures on $\Delta\left(A_{i}\right): S_{i}$

$$
\mathcal{S}=S_{1} \times \cdots \times S_{I}, \quad I=|\mathfrak{I}|
$$

- Strategy s_{i} for Player $i \in \mathfrak{I}$ of type $\theta_{i} \in \Theta_{i}$ is the function $s_{i}=s\left(\theta_{i}\right), s: \Theta_{i} \rightarrow S_{i}$
- Strategy Profile (of all players): $s=\left(s_{1}, \cdots, s_{I}\right)$

Bayesian Nash Equilibrium (BNE)

- Let $u_{i}\left(s ; \theta_{i}\right), s \in \mathcal{S}$ be the payoffs of player $i \in \mathfrak{I}$
- If his type is $\theta_{i} \in \Theta_{i}$ and strategy profile is $s \in \mathcal{S}$
- Let $f\left(\theta_{1}, \cdots, \theta_{I}\right)$ be the joint distribution over types, which is common knowledge. Then, a
- strategy profile is a Bayesian Nash equilibrium
- If for each $\theta_{i} \in \Theta_{i}, i \in \mathfrak{I}, s\left(\theta_{i}\right)$ is a BR
- given the common knowledge beliefs

Bayesian Nash Equilibrium (BNE)

- As if Nature moves in stage 0 to choose - Player types $\left(\theta_{1}, \cdots, \theta_{I}\right) \in \Theta_{1} \times \cdots \times \Theta_{I}$
- Nature's payoffs are the same for all outcomes
- It is a BR to play mixed strategy $f\left(\theta_{1}, \cdots, \theta_{I}\right)$
- BNE of the I-player game is the NE of the ($I+1$)-player game (with Nature moving first) - All existence theorems apply...

Sealed First-Price and Second Price Auctions

- Bidding game with one single item for sale
- n risk neutral buyers
- Value is continuously distributed on the unit interval with $\operatorname{cdf} F\left(\theta_{i}\right) \sim[0,1]$
- All this is common knowledge
- In Auction games,
- Buyer's type $=$ Value (private information)
- Pure Strategy $=$ Bid function $b=b_{i}\left(\theta_{i}\right)$

Sealed Second-Price Auction

- Each buyer submits one sealed bid

$$
b_{i} \geq 0, i=1, \cdots, n
$$

- Buyer who makes highest bid is the winner - If there is a tie, the winner is chosen randomly from the tying high bidders
- The winning bidder pays the second-highest bid and receivers the item
>Bidding one's value is a dominant strategy!

Dominance in Sealed Second-Price Auction

>Bidding one's value is a dominant strategy

- Note: This is independent of iid, \# of bidders,...
- Proof: Consider maximum of all other bids m
- If buyer i deviates to $x<\theta_{i}$

1. For $m<x$: Buyer i still wins and still pays m
2. For $m>\theta_{i}$: Buyer i still loses (both the same)
3. For $x<m<\theta_{i}$: Buyer i now loses (could win)

- Similar if buyer i deviates to $x>\theta_{i}$ (homework)

BNE in Sealed Second-Price Auction

> Bidding one's value is a dominant strategy

- Consider the order statistics of values (highest to lowest): $\left\{\theta_{(1)}, \theta_{(2)}, \cdots, \theta_{(n)}\right\}$
- In this (dominance-solvable) BNE:
- Winner is buyer with value $\theta_{(1)}$ and pays $\theta_{(2)}$
- Buyer i 's expected payment conditional on winning is $E\left\{\theta_{(2)} \mid \theta_{(1)}=\theta_{i}\right\}$
- Note: There are other "crazy" asymmetric BNE...

Sealed First Price Auction

- Each buyer submits one sealed bid

$$
b_{i} \geq 0, i=1, \cdots, n
$$

- Buyer who makes highest bid is the winner - If there is a tie, the winner is chosen randomly from the tying high bidders
- The winning bidder pays his bid and receivers the item

Sealed First Price Auction

- Assume buyer values are iid $F(\theta) \sim[0, \beta]$
- Solve for Equilibrium Bidding Strategy $B\left(\theta_{i}\right)$
- Symmetric (since we assume iid values)
- Strictly increasing (high types unlikely to bid low)
- Assume $B\left(\theta_{i}\right) \in C^{1}$ (by assuming $F(\theta) \in C^{1}$)
- If others follow BNE, the win probability of following BNE is $w\left(\theta_{i}\right)=F^{n-1}\left(\theta_{i}\right)$
- Win only when you are the highest type...

Sealed First Price Auction

- For Equilibrium Payoff $u\left(\theta_{i}\right)=w(\theta)(\theta-B(\theta))$
- If deviate to bidding a fixed $B\left(\theta_{i}\right)$, payoff is:

Sealed First Price Auction

- Since $B(0)=0$, we have $w(0)=0$ and $u(0)=0$
- Thus, $\frac{d u}{d \theta}\left(\theta_{i}\right)=w\left(\theta_{i}\right)$ becomes:
$u\left(\theta_{i}\right)=\int_{0}^{\theta_{i}} \frac{d u}{d \theta} d \theta=\int_{0}^{\theta_{i}} w(\theta) d \theta$
$=\theta_{i} w\left(\theta_{i}\right)-\int_{0}^{\theta_{i}} \theta d w(\theta)=w\left(\theta_{i}\right)\left(\theta_{i}-B\left(\theta_{i}\right)\right)$
- $\int_{0}^{\theta_{i}} \theta d w(\theta)$ Same as Second-Price!!
- Thus, $B\left(\theta_{i}\right)=\frac{\int_{0}}{w\left(\theta_{i}\right)}=\mathrm{E}\left\{\theta_{(2)} \mid \theta_{(1)}=\theta_{i}\right\}$

Prop. 10.1-1/2: Revenue/Buyer Equivalences

- In an n-bidder auction where bidders are risk neutral and values are iid $F(\theta) \sim[0, \beta], F \in C^{1}$
- For the sealed first- and second-price auctions,
- Proposition 10.1-1: The equilibrium expected revenue is the same.
- In fact, we have Buyer Equivalence as well!
- Proposition 10.1-2: The equilibrium payoff for each buyer type is the same.

Prop. 10.1-3/4: Strategic Equivalences

- Dutch Auction
- English Auction
- Prop. 10.1-3: Equilibrium bidding strategies of the FP and Dutch auctions are the same
- Prop. 10.1-4: Equilibrium bidding strategies of the SP and English auctions are the same
- Note: Not just revenue, and assumption free!

Sequential Move Games

- Player i_{t} moves in stage t has $\operatorname{Type} \theta_{t} \in \Theta_{t}$
- Set of feasible Actions: A_{t}
- Set of all probability measures on $\Delta\left(A_{t}\right): S_{t}$

$$
\mathcal{S}=S_{1} \times \cdots \times S_{T}
$$

- Strategy s_{t} for Player i_{t} of type $\theta_{t} \in \Theta_{t}$ is the function $s_{t}=s\left(h^{t}, \theta_{t}\right), s: H^{t} \times \Theta_{t} \rightarrow S_{t}$
- Strategy Profile (of all players): $s=\left(s_{1}, \cdots, s_{T}\right)$

BNE in Sequential Move Games

- Let $u_{t}\left(s ; \theta_{t}\right), s \in \mathcal{S}$ be the payoffs of player i_{t}
- If his type is $\theta_{t} \in \Theta_{t}$ and strategy profile is $s \in \mathcal{S}$
- Let $f\left(\theta_{1}, \cdots, \theta_{T}\right)$ be the joint distribution over types, which is common knowledge. Then, a
- strategy profile is a Bayesian Nash equilibrium
- If for each t and $\theta_{t} \in \Theta_{t}, s_{t}\left(h^{t}, \theta_{t}\right)$ is a BR
- given the common knowledge beliefs
- Note: Assume independent types for 10.1...

Sequential Move Games - An Example

- Cournot Duopoly Game (with private costs)
- Two firms; firm i has unit cost: $c_{i}, i=1,2$ - Private information: Know own cost only...
- Choose output q_{i}; market clearly price is:

$$
p(q)=a-q_{1}-q_{2}
$$

- Firm 1 moves first
- Firm 2 observes and chooses $q_{i}^{B R}\left(q_{1}, c_{2}\right)$
- Anticipated by Firm 1...

Sequential Move Games - An Example

- Firm 1 forms belief $E_{1}\left\{c_{2}\right\}$
- For output vector q, firm 2's profit is

$$
U_{2}\left(q, c_{2}\right)=\left(a-q_{1}-q_{2}-c_{2}\right) \cdot q_{2}
$$

- Firm 2's optimal quantity is
$q_{2}^{B R}\left(q_{1}, c_{2}\right)=\arg \max _{q_{2}}\left\{U_{2}\left(q, c_{2}\right)\right\}=\frac{1}{2}\left(a-c_{2}-q_{1}\right)$
- Firm 1's belief is $q_{2}^{B R}\left(\bar{c}_{12}\right)=\frac{1}{2}\left(a-E_{1}\left\{c_{2}\right\}-q_{1}\right)$

Sequential Move Games - An Example

- Firm 1's belief is $q_{2}^{B R}\left(\bar{c}_{12}\right)=\frac{1}{2}\left(a-E_{1}\left\{c_{2}\right\}-q_{1}\right)$
- Profit: $U_{1}=\left(a-q_{1}-q_{2}^{B R}\left(\bar{c}_{12}\right)-c_{1}\right) q_{1}$
$=\left[\frac{1}{2}\left(a-q_{1}\right)+\frac{1}{2} E_{1}\left(c_{2}\right)-c_{1}\right] q_{1}$
- Maximized at:

$$
q_{1}^{B R}=\frac{1}{2} a-c_{1}+\frac{1}{2} E_{1}\left\{c_{2}\right\}
$$

- So,

$$
q_{2}^{B R}\left(q_{1}, c_{2}\right)=\frac{1}{2}\left(a-c_{2}-q_{1}\right)
$$

- (3 firms?) $=\frac{1}{4} a+\frac{1}{2}\left(c_{2}-c_{1}\right)-\frac{1}{4} E_{1}\left(c_{2}\right)$

Joseph Tao-yi Wang Games of Incomplete Information

Summary of 10.1

- Bayesian Games
- Incomplete Information as "Types"
- Bayesian Nash Equilibrium
- Auction Games:
- First-Price (Dutch) vs. Second-Price (English)
- Revenue/Buyer/Strategic Equivalences
- HW 10.1: Riley - 10.1-1, 3, 4
- Do the case of $x>\theta_{i}$ in second-price auctions

