Games with History

Joseph Tao-yi Wang 2012/12/6

(Lecture 7, Micro Theory I)

Finitely Repeated Game

- Play the same simultaneous game each stage
- History of the game: h_i^t
- = all information available to player i at period t
- The Second Stage Strategy is a function of history h_i^2
- Two/Three stage repeated game strategy: $s_i = (s_i^1, s_i^2(h_i^2)) \in S_i \times S_i$ $s_i = (s_i^1, s_i^2(h_i^2), s_i^3(h_i^3)) \in S_i \times S_i \times S_i$

Finitely Repeated Game

- T-stage repeated game strategy: $s = (s^1, \cdots, s^T) \in \mathcal{S} = S^1 \times \cdots \times S^T$
- Stage game strategy space: $S^{t} = \underset{i \in I}{\times} S_{i}, t = 1, \cdots, T$
- Player *i*'s stage *t* payoff $u_i(s^t)$
- Discount rate δ
- Player *i*'s (total) payoff $U_i(s) = \sum_{t=1} \delta^{t-1} u_i(s^t)$

T

Prop. 9.2-1: NE of a Finitely Repeated Game

- i. Suppose each $\overline{s}^t = \{\overline{s}_1^t, \overline{s}_2^t, \cdots, \overline{s}_n^t\}, t = 1, \cdots, T$ is an NE of the *t*-th stage game, Then, $\overline{s} = (\overline{s}^1, \overline{s}^2, \cdots, \overline{s}^T)$ (indep. of history) is an NE of the T-stage repeated game ii. If \hat{s} is the unique NE of the stage game, then $(\hat{s}, \dots, \hat{s})$ is an NE of the finitely repeated game
- Proof:

Proof of Proposition 9.2-1: Part (i)

- Compare NE $\overline{s} \in \mathcal{S}$ and player i's deviation s_i
- Need to show that:

$$U_i(s_i, \overline{s}_{-i}) - U_i(\overline{s}_i, \overline{s}_{-i})$$

= $\sum_{t=1}^T \delta^{t-1} \left[u_i(s_i^t, \overline{s}_{-i}^t) - u_i(\overline{s}_i^t, \overline{s}_{-i}^t) \right] \leq 0$

- Since \overline{s}^t is an NE of the *t*-th stage game, $u_i(s_i^t, \overline{s}_{-i}^t) - u_i(\overline{s}_i^t, \overline{s}_{-i}^t) \le 0$ for all t
- Sum them up and you are done!

Proof of Proposition 9.2-1: Part (ii)

- Compare NE $\overline{s} \in S$ and player *i*'s deviation s_i in which for some $t, s_i^t \neq \overline{s}_i^t$, and $s_i^\tau = \overline{s}_i^\tau, \forall \tau \neq t$ $U_i(s_i, \overline{s}_{-i}) - U_i(\overline{s}_i, \overline{s}_{-i})$ $= \delta^{t-1} \left[u_i(s_i^t, \overline{s}_{-i}^t) - u_i(\overline{s}_i^t, \overline{s}_{-i}^t) \right] \leq 0$
- Since $\hat{s} \in S$ is the unique NE of the stage game
- There is only one $\overline{s}_i^t = \hat{s}$ such that $u_i(s_i^t, \overline{s}_{-i}^t) - u_i(\overline{s}_i^t, \overline{s}_{-i}^t) \le 0$
- So, this NE must be $(\hat{s}, \cdots, \hat{s})$.

Nash Equilibrium: Repeated Partnership Game

- Consider the Partnership Game in Section 9.1...
- Two Agents have equal share in a partnership
- Choose Effort: $a_i \in A_i = \{1, 2, 3\}$
- Total revenue: $R = 12a_1a_2$
- Cost to agent *i*: $C_i(a_i) = a_i^3$
- Payoff: $u_i(s) = R/2 C_i(a_i) = 6a_1a_2 a_i^3$
- Game matrix and Nash Equilibrium...

Nash Equilibrium: Repeated Partnership Game

Two static-NE: (1,1), (2,2)Player 2: Colin Combo of static-NE is NE in 2-stage repeated game 2 3 Best Payoff = $16+16\delta$ 11, 4 17, -9 1 5, 5 Player 1: 4, 11 16, 16 2 28, 9 Rowena -9, 17 9, <u>28</u> 27, 27 3

Can we do better?

Equilibrium Threats

- These are NOT the only two equilibria
- Agents can threat to play the bad equilibrium in stage 2 to induce (3,3) and earn (27, 27)...
- EX: Use: $\overline{s}_i^1 = 3$, $\overline{s}_i^2(h^2) = 2$ if $h^2 = (3,3)$ $\overline{s}_i^2(h^2) = 1$ if $h^2 \neq (3,3)$
- If other agent follows this strategy,
- Is it a BR to follow this strategy?
- Yes for Stage 2 (both (2, 2) & (1, 1) are static-NE)
 For Stage 1...

Nash Equilibrium: Repeated Partnership Game

$$u(\text{follow}) = 27 + \delta \cdot 16$$

$$u(\text{defect}) = 28 + \delta \cdot 5$$

Yes if $\delta \ge \frac{1}{11}$

$$1$$

$$2$$

$$1$$

$$2$$

$$3$$

Player 1:
Rowena

$$3$$

$$-9, 17$$

$$9, 28$$

$$27, 27$$

Player 2: Colin

$$1$$

$$2$$

$$3$$

$$-1$$

$$2$$

$$3$$

$$-1$$

$$2$$

$$-1$$

$$-1$$

$$-9$$

$$-1$$

$$-9$$

$$-9$$

$$-9, 17$$

$$-9, 28$$

$$-27, 27$$

Player 2: Colin

$$-2$$

$$-2$$

$$-3$$

$$-1$$

$$-2$$

$$-3$$

$$-1$$

$$-3$$

$$-3$$

$$-9$$

$$-9, 17$$

$$-9, 28$$

$$-27, 27$$

$$-2$$

$$-2$$

$$-2$$

$$-9, 17$$

$$-9, 28$$

$$-27, 27$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

What if MORE rounds?

Sequential Move Games

- T Stages
- Agent $i = i_t \in \mathcal{I}$ moves in stage t
- History prior to stage t observed by i : h_i^t
- Set of possible pure strategies in stage t is S_t
- Strategy Profile: $s = (s_1, \cdots, s_T)$
- (Expected) Payoffs: $u_i(s)$ depends on s
- Exists other Nash equilibrium not solved by BI...

Entry Game with Sub-game

• Selten's Chain Store Paradox

Entry Game with Sub-game

• Selten's Chain Store Paradox

Entry Game with Sub-game

But (Out, Fight) is **not credible**:

Definition of a Sub-game

Definition of Sub-game Perfect Equilibrium

SPE of the (Reduced) Entry Game

- Reduced entry game (0,6) (with payoffs from the sub-game)
 - choose $s_1 = Enter$
 - Unique SPE is *(Enter, Share)*

Prop. 9.2-2: One-Stage Deviation Principle

- In a T-stage sequential move game
- If strategy profile $\overline{s} = (\overline{s}^1, \overline{s}^2(h^2), \cdots, \overline{s}^T(h^T))$ has no profitable one-stage deviation,

• Then, this strategy profile is SPE.

• Proof:

- For $\overline{s} \in S$ (no profitable 1-stage deviation) and $s = (s^1, s^2(h^2), \cdots, s^T(h^T))$ (only player *i* deviates)
- Consider $\overline{s}(\theta)$ the hybrid of the two strategies: $\overline{s}(\theta)^t(h^t) = \begin{cases} \overline{s}^t(h^t) \text{ if } t \ge \theta \\ s^t(h^t) \text{ if } t < \theta \end{cases} \overline{s}(\theta)^t_i(h^t) = \begin{cases} \overline{s}^t_i(h^t) \text{ if } t \ge \theta \\ s^t_i(h^t) \text{ if } t < \theta \end{cases}$
- Then, since \overline{s} has no profitable 1-stage deviation $\overline{s}(\theta) = (s^1, \cdots, s^{\theta-1}(h^{\theta-1}), \overline{s}^{\theta}(h^{\theta}), \cdots, \overline{s}^T(h^T))$
- Has no profitable 1-stage deviation for stage $t \geq \theta$

- Consider the last stage t=a s. t. $\overline{s}_i^t(h^t) \neq s_i^t(h^t)$
- Then, $s = \overline{s}(a+1)$
- Claim: $U_i(\overline{s}(a)) \ge U_i(\overline{s}(a+1)) = U_i(s)$
- Since \overline{s} has no profitable 1-stage deviation,

$$U_i(\overline{s}(a)) - U_i(\overline{s}(a+1)) \qquad \overline{s}(\theta)_i^t(h^t) = \begin{cases} s_i^t(h^t) & \text{if } t \ge \theta \\ s_i^t(h^t) & \text{if } t < \theta \end{cases}$$

 $t(1+1) \cdot c \cdot x$

$$= \delta^{a-1} \left[u_i \left(\overline{s}_i^a(h^a), \overline{s}_{-i}^a(h^a) \right) - u_i \left(s_i^a(h^a), \overline{s}_{-i}^a(h^a) \right) \right]$$

- For the next-to-last stage t=b s. t. $\overline{s}_i^t(h^t) \neq s_i^t(h^t)$
- Then, $\overline{s}(b+1) = \overline{s}(a)$ (no deviations in btw)
- Claim: $U_i(\overline{s}(b)) \ge U_i(\overline{s}(b+1))$
- Since \overline{s} has no profitable 1-stage deviation, $U_i(\overline{s}(b)) - U_i(\overline{s}(b+1))$ $= \delta^{b-1} \left[u_i(\overline{s}_i^b(h^b), \cdot) - u_i(s_i^b(h^b), \cdot) \right] \ge 0$
- Thus, $U_i(\overline{s}(b)) \ge U_i(\overline{s}(b+1)) = U_i(\overline{s}(a))$
- (by induction, QED.) $\geq U_i(\overline{s}(a+1)) = U_i(s)$

You can do the same for the next-next-to-last stage t=c such that state that the state that the state that the state that state that the state that the

 $\geq U_i(\overline{s}(c+1)) = U_i(\overline{s}(b))$ $\geq U_i(\overline{s}(b+1)) = U_i(\overline{s}(a))$ $\geq U_i(\overline{s}(a+1)) = U_i(s)$

- So \overline{s} is a NE for the whole game.
- The same applies to all sub-games, so it's SPE!

Cor. 9.2-3: 1-Stage Deviation Principle for FRG

- Finitely repeated games (FRG) is a special case of sequential move games...
- In a <u>finitely repeated game</u>,
- If strategy profile $\overline{s} = (\overline{s}^1, \overline{s}^2(h^2), \cdots, \overline{s}^T(h^T))$ has no profitable one-stage deviation, Then, this strategy profile is SPE.
- Proof: Special case of Proposition 9.2-2.

Summary of 9.2

- Finitely Repeated Games

 Equilibrium Threat and Efficiency
- Sequential Move Game
- Sub-game Perfect Equilibrium
 Solved by Backward Induction
- HW 9.2: Riley 9.2-2 and 9.2-3 and BGT5