Games and Strategic Equilibrium

Joseph Tao-yi Wang 2012/11/29
(Lecture 5, Micro Theory I)

What is a Game?

- Example: Two competing firms
- Agents $i=$ manager of firm $i=1,2$
- Post next week's price on Sunday Times - High price or Low price
- Agent 1 sets price first
- Sunday Times posts price online instantly; Agent 2 sees opponent's price before setting own price
- Represent game as a game tree

What is a Game?

$$
\text { High (4,4) } \begin{aligned} & \text { Set of agents } \\ & \mathcal{I}=\{1,2\} \end{aligned}
$$

 High (4,4)

 High (4,4) Set of agents Set of agents $\mathcal{I}=\{1,2\}$ $\mathcal{I}=\{1,2\}$

 Low (1,6) Action a_{i} High $\mathbf{(6 , 1)} \quad a_{2}=\tilde{a_{2}}\left(a_{1}\right)$ Set of feasible actions $A_{i}=\{$ High, Low $\}$ $\tilde{A}_{2}=\{H H, H L, L H, L L\}$ Low $\quad(2,2)$
What is a Game?

Outcome Profile

High (4,4) Payoff

 $a=\left(a_{1}, a_{2}\right)$ Initial Node High

Terminal Node Low $(1,6)$

Joseph Tao-yi Wang Games and Strategic Equilibrium

What is a Game?

Payoff

High

 $2 \mathrm{H} \quad u(a)=\left(u_{1}(a), u_{2}(a)\right)$ High Low $(1,6)$Low

$$
\begin{aligned}
(4,4) & =u(\text { High, High } \\
u(a) & =\left(u_{1}(a), u_{2}(a)\right)
\end{aligned}
$$

High $(6,1)$

Low $(2,2)=u($ Low, Low $)$
Joseph Tao-yi Wang Games ana strategic Equilibrium

What is a Game?

Joseph Tao-yi Wang Games and Strategic Equilibrium

What is a Game?

$$
\operatorname{High}_{\substack{(4,4)}}^{(\text {If both } \mathrm{H}}
$$ High

Low

If both cut prices

Extensive Form of the Game

Other Extensive Form Games

 H $(100,100)$

Joseph Tao-yi Wang Games and Strategic Equilibrium

Special Case: All Actions Hidden

H $(100,100)$

H (150, 30) ${ }^{\cdot}$ Nothing posted online

Low
H (90.40$)^{\circ}$ Information Set
 - $2 \mathrm{H}, 2 \mathrm{M}, 2 \mathrm{~L}\}$

Strict and Weak Dominance

- Set of opponent action space $A_{-i}=\bigotimes A_{j}$
- For agent i,
a_{i} is strictly dominated by $\overline{a_{i}}$ if

$$
u_{i}\left(\overline{a_{i}}, a_{-i}\right)>u_{i}\left(a_{i}, a_{-i}\right) \text { for all } a_{-i} \in A_{-i}
$$

a_{i} is weakly dominated by $\overline{a_{i}}$ if

$$
\begin{aligned}
& u_{i}\left(\overline{a_{i}}, a_{-i}\right) \geq u_{i}\left(a_{i}, a_{-i}\right) \text { for all } a_{-i} \in A_{-i} \\
& u_{i}\left(\overline{a_{i}}, a_{-i}\right)>u_{i}\left(a_{i}, a_{-i}\right) \text { for some } a_{-i} \in A_{-i}
\end{aligned}
$$

Strict and Weak Dominance

Joseph Tao-yi Wang Games and Strategic Equilibrium

Strict and Weak Dominance

Joseph Tao-yi Wang Games and Strategic Equilibrium

Strict and Weak Dominance

Joseph Tao-yi Wang Games and Strategic Equilibrium

Strict and Weak Dominance

High (4,4)

$a_{2}=L o w$ strictly dominates $a_{2}=H i g h$

Joseph Tao-yi Wang Games and Strategic Equilibrium

Strict and Weak Dominance

High (4,4)

Joseph Tao-yi Wang Games and Strategic Equilibrium

Strict and Weak Dominance

Joseph Tao-yi Wang Games and Strategic Equilibrium

Strict and Weak Dominance

High (4,4)

$a_{1}=L o w$ strictly dominates $a_{1}=H i g h$

Low
 (1)6) (T.1)

(Low, Low) uniquely survives EDS

 Low $\sqrt{(2,2)}$Joseph Tao-yi Wang Games and Strategic Equilibrium

Simultaneous Game: Extensive Form

H $(100,100)$

$\left.{ }^{2}=\frac{M}{(30,150}\right)^{\circ}$ Action: H, M, L (-40, 90)
H(150, 30) ${ }^{\bullet}$ Nothing posted online

H (90, 40) ${ }^{\circ}$ Information Set $L^{\frac{H}{M}(90,-40)}(60,0) \cdot\{2 \mathrm{H}, 2 \mathrm{M}, 2 \mathrm{~L}\}$

Simultaneous Game: Strategic (Normal) Form

High strictly dominated by

Player 2: Colin

Elimination of Dominated Strategies (EDS)

Medium weakly dominated by Low

Player 2: Colin

Player 1:
Rowena

Iterative Elimination of Dominated Strategies

Player 2: Colin

(Low, Low) uniquely survives IEDS

Low
Player 1:
Rowena
Low

Mixed Strategy and Dominance

(2/3,1/3)-mixture of (Middle, Down) weakly dominates Up

Player 2: Colin

Left Right

Mixed Strategy and IEDS

Left strictly dominates Right

Player 2: Colin

Player 1:
Rowena
Down strictly dominates Middle

Equilibrium of "One-Shot" Simultaneous Game

- Each Agent $i \in \mathcal{I}$
- Has finite Action Set $A_{i}=\left\{a_{i 1}, a_{i 2}, \cdots, a_{i m}\right\}$
- Agent i's Strategy Set

$$
S_{i}=\Delta\left(A_{i}\right)=\left\{\pi \mid \pi \geq 0, \sum_{j=1}^{m_{i}} \pi_{j}=1\right\}
$$

- Mixed Strategy: $\pi_{i}\left(a_{i}\right)$
- Strategy Profile:

$$
s=\left(s_{1}, \cdots, s_{I}\right) \in S=S_{1} \times \cdots \times S_{I}
$$

Equilibrium of "One-Shot" Simultaneous Game

- Consequence of the game (for agent i): $\pi_{i}(a)$
- Outcome of the game (for agent i): $x_{i}(a)$
- Agent i's Expected Utility

$$
\left.u_{i}=\sum_{a \in A} \pi_{i}(a) v_{i}\left(x_{i}(a)\right)=u_{i}(a) \cdot \pi_{(} a\right)
$$

- Mixing in Continuous Action Space: $\mu_{i} \in \Delta\left(A_{i}\right)$
- Expected Utility in Continuous Action Space:

$$
u_{i}(s)=\int_{a \in A} u_{i}(a) d \mu(a)
$$

Nash Equilibrium

- Strategy Profile: $s \in S=\Delta_{1}\left(A_{1}\right) \times \cdots \times \Delta_{I}\left(A_{I}\right)$
- Best Response: $B R_{i}\left(s_{-i}\right)$
- Best Response Mapping:

$$
B R(s)=\left(B R_{1}\left(s_{-1}\right), \cdots, B R_{I}\left(s_{-I}\right)\right)
$$

- Nash Equilibrium: s such that $B R(s)=s$
- Fixed Point in the BR mapping
- Consider a strategy profile $\bar{s}=\left(\bar{s}_{1}, \cdots, \bar{s}_{I}\right)$
- Is there any other strategy strictly better for agent i (if others play according to \bar{s}_{-i})

Nash Equilibrium

- For simultaneous game played by agents 1^{\sim} I
- The strategy profile $\bar{s}=\left(\bar{s}_{1}, \cdots, \bar{s}_{I}\right)$ is a Nash Equilibrium if the strategies are mutual BR.
- In other words,
- For each $i \in \mathcal{I}$ and all $a_{i} \in A_{i}$

$$
u_{i}\left(\bar{s}_{i}, \bar{s}_{-i}\right) \geq u_{i}\left(a_{i}, \bar{s}_{-i}\right)
$$

- Note that you only need to check pure strategies since mixed strategies yield a weighted average of payoffs among pure strategies

Nash Equilibrium: Partnership Game

- Two Agents have equal share in a partnership
- Choose Effort: $a_{i} \in A_{i}=\{1,2,3\}$
- Total revenue: $R=12 a_{1} a_{2}$
- Cost to agent $i: C_{i}\left(a_{i}\right)=a_{i}^{3}$
- Payoff: $u_{i}(s)=R-C_{i}\left(a_{i}\right)=12 a_{1} a_{2}-a_{i}^{3}$
- Game matrix and Nash Equilibrium...

Nash Equilibrium: Partnership Game

1 is a $B R$ if other picks 1

Player 2: Colin
2 is a BR if other picks 2 or 3

1	2	3
5,5	11,4	$17,-9$
4,11	16,16	28,9
$-9,17$	9,28	27,27

Player 1:
Rowena

Nash Equilibrium: Partnership Game

1 is a $B R$ if other picks 1

Player 2: Colin
2 is a BR if other picks 2 or 3

Player 1:
Rowena

2
 3

Nash Equilibrium: Partnership Game

$$
\begin{aligned}
& (1,1)=B R(1,1) \\
& (2,2)=B R(2,2)
\end{aligned}
$$

Player 2: Colin

Player 1:
Rowena

5,5	11,4	$17,-9$
4,11	16,16	28,9
$-9,17$	9,28	27,27

Nash Equilibrium: Partnership Game

- This is NOT the only two NE
- Solve for MSE:
- For $s_{2}=(p, 1-p, 0) \in \Delta\left(A_{2}\right)$
$u_{1}\left(1, s_{2}\right)=5 p+11(1-p)=11-6 p$
- $=u_{1}\left(2, s_{2}\right)=4 p+16(1-p)=16-12 p$
- Hence,

$$
p=\frac{5}{6}
$$

- By symmetry, MSE is $s_{1}=s_{2}=\left(\frac{5}{6}, \frac{1}{6}, 0\right)$

Common Knowledge

－Common Knowledge of the Game
－Common Knowledge of Rationality
－Common Knowledge of Equilibrium
－Exercise：Is＂九二共識＂truly a consensus in terms of common knowledge？

Existence of Equilibrium

- Use: Kakutani's Fixed Point Theorem (FPT) If $S \subseteq \mathbf{R}^{n}$ is closed, bounded \& convex and if ϕ is an upper hemi-continuous correspondence from S to S, such that $\phi(s)$ is non-empty and convex, then $\phi(s)$ has a fixed point.
- Proposition 9.1-1: Existence of NE (Nash, 1950)
- In a game with finite action sets, if players can choose either pure or mixed strategies, there exists a Nash Equilibrium.

Existence of Equilibrium

- Consider a "simpler" version of FPT: If $S_{1}, S_{2} \subseteq \mathbf{R}$ is closed, bounded and convex and $\phi_{1}\left(s_{2}\right), \phi_{2}\left(s_{1}\right)$ are continuous functions from S_{-i} to S_{i}, then $\phi=\left(\phi_{1}, \phi_{2}\right)$ has a fixed point.
- Existence of Nash Equilibrium requires:
- Strategy sets are closed, bounded and convex,
- BR functions are indeed continuous...

Existence of Equilibrium

Joseph Tao-yi Wang Games and Strategic Equilibrium

Existence of Equilibrium

Joseph Tao-yi Wang Games and Strategic Equilibrium

Existence of Equilibrium

Mixed-strategy NE in which player $\underline{1}$ plays Up with probability π_{1} and player $\underline{2}$ plays Left with probability π_{2}.

Existence of Equil.: Continuous Action Space

For continuous action space (where each player chooses a pure strategy a_{i}), there exists a pure strategy NE in which player $\underline{1}$ plays a_{1} and player $\underline{2}$ plays a_{2}.

Existence of Equilibrium: For Non-unique BR

- Why do we need Kakutani's FPT?
- Because best response may not be unique!!!
- BR correspondences,
- Not only BR "functions"
- Upper hemi-continuous
- Not "Continuous"

Existence of Equilibrium

- Use: Kakutani's Fixed Point Theorem (FPT) If $S \subseteq \mathbf{R}^{n}$ is closed, bounded \& convex and if ϕ is an upper hemi-continuous correspondence from S to S, such that $\phi(s)$ is non-empty and convex, then $\phi(s)$ has a fixed point.
- Closed and Bounded
- Convex
- Upper hemi-continuous

Existence of Equilibrium

- Closed

$$
\text { If }\left\{s^{n},\right\} \in S, \quad \lim _{n \rightarrow \infty} s^{n}=\bar{s} \in S .
$$

- Bounded

$$
S \subseteq B(s, r), r<\infty
$$

- Contained in a ball of radius r (centered at s)
- Convex If $s^{0}, s^{1} \in C$, for $0<\lambda<1$,

$$
s^{\lambda}=(1-\lambda) s^{0}+\lambda s^{1} \in C .
$$

Existence of Equilibrium

- $\phi(s)$ is upper hemicontinuous at \bar{s} if
- For any open neighborhood

$$
V \text { of } \phi(\bar{s})
$$

- There exists $N(\delta, \bar{s})$ a δ-neighborhood of \bar{s}
- such that $\phi(s) \subseteq V$ for all $s \in N(\delta, \bar{s})$

Joseph Tao-yi Wang Games and Strategic Equilibrium

Existence of Equilibrium

- Using Kakutani's Fixed Point Theorem (FPT)
- Proposition 9.1-1: Existence of NE (Nash, 1950)
- In a game with finite action sets, if players can choose either pure or mixed strategies,
- Mixed strategy profile ($\pi_{1}, \pi_{2}, \ldots, \pi_{n}$), $0 \leqq \pi_{i} \leqq 1$
- Closed, bounded and convex
- there exists a Nash Equilibrium.
- BR correspondence is non-empty, convex (mixing among $B R$ is also $B R$), and upper hemi-continuous

Existence of Equilibrium

- Proposition 9.1-2: Existence of pure NE
- In a game with action sets $A_{i} \subseteq \mathbf{R}^{n}$ is closed, bounded and convex, and utility u is continuous,
- If BR sets $B R_{i}\left(a_{-i}\right) \subseteq A_{i} \quad$ are convex,
- there exists a pure strategy Nash Equilibrium.
- Corollary 9.1-3: Existence of pure NE
- If BR sets $B R_{i}\left(a_{-i}\right) \subseteq A_{i}$ are single-valued, or If $u_{i}\left(a_{i}, a_{-i}\right)$ are quasi-concave over a_{i}
- there exists a pure strategy Nash Equilibrium.

Summary of 9.1

- Game Tree
- Extensive Form and Information Sets
- Simultaneous Game
- Strategic Form (Normal Form)
- Nash Equilibrium
- Existence of Nash Equilibrium (by Kakutani's FPT)
- HW 9.1: Riley - 9.1-1~4

