Games and Strategic Equilibrium

Joseph Tao-yi Wang 2012/11/29

(Lecture 5, Micro Theory I)

What is a Game?

- Example: Two competing firms
- Agents i = manager of firm i = 1, 2
- Post next week's price on Sunday Times
 High price or Low price
- Agent 1 sets price first
 - Sunday Times posts price online instantly; Agent
 2 sees opponent's price before setting own price
- Represent game as a game tree

Strict and Weak Dominance

- Set of opponent action space $A_{-i} = \bigotimes$
- For agent i, $j \neq i$
 - a_i is **strictly dominated** by $\overline{a_i}$ if

$$u_i(\overline{a_i}, a_{-i}) > u_i(a_i, a_{-i})$$
 for all $a_{-i} \in A_{-i}$

 A_i

 a_i is **weakly dominated** by $\overline{a_i}$ if $u_i(\overline{a_i}, a_{-i}) \ge u_i(a_i, a_{-i})$ for all $a_{-i} \in A_{-i}$ $u_i(\overline{a_i}, a_{-i}) > u_i(a_i, a_{-i})$ for some $a_{-i} \in A_{-i}$

Simultaneous Game: Strategic (Normal) Form

Elimination of Dominated Strategies (EDS)

Iterative Elimination of Dominated Strategies

Player 2: Colin

(Low, Low) uniquely survives IEDS

Low

Player 1: Rowena

Low

Mixed Strategy and Dominance

(2/3,1/3)-mixture of (Middle, Down) weakly dominates Up

Mixed Strategy and IEDS

Equilibrium of "One-Shot" Simultaneous Game

- Each Agent $i \in \mathcal{I}$
- Has finite Action Set $A_i = \{a_{i1}, a_{i2}, \cdots, a_{im}\}$
- Agent *i*'s Strategy Set $S_i = \Delta(A_i) = \left\{ \pi \middle| \pi \ge 0, \sum_{j=1}^{m_i} \pi_j = 1 \right\}$
- Mixed Strategy: $\pi_i(a_i)$
- Strategy Profile:

$$s = (s_1, \cdots, s_I) \in S = S_1 \times \cdots \times S_I$$

Equilibrium of "One-Shot" Simultaneous Game

- Consequence of the game (for agent *i*): $\pi_i(a)$
- Outcome of the game (for agent *i*): $x_i(a)$
- Agent *i*'s Expected Utility

$$u_i = \sum_{a \in A} \pi_i(a) v_i(x_i(a)) = u_i(a) \cdot \pi_i(a)$$

- Mixing in Continuous Action Space: $\mu_i \in \Delta(A_i)$
- Expected Utility in Continuous Action Space:

$$u_i(s) = \int_{a \in A} u_i(a) d\mu(a)$$

Nash Equilibrium

- Strategy Profile: $s \in S = \Delta_1(A_1) \times \cdots \times \Delta_I(A_I)$
- Best Response: $BR_i(s_{-i})$
- Best Response Mapping: BR(s) = (BR₁(s₋₁), ..., BR_I(s_{-I}))
 Nash Equilibrium: s such that BR(s) = s - Fixed Point in the BR mapping
- Consider a strategy profile $\overline{s} = (\overline{s}_1, \cdots, \overline{s}_I)$
- Is there any other strategy strictly better for agent i (if others play according to \overline{s}_{-i})

Nash Equilibrium

- For simultaneous game played by agents 1~1
- The strategy profile $\overline{s} = (\overline{s}_1, \dots, \overline{s}_I)$ is a Nash Equilibrium if the strategies are mutual BR.
- In other words,
- For each $i \in \mathcal{I}$ and all $a_i \in A_i$

$$u_i(\overline{s}_i, \overline{s}_{-i}) \ge u_i(a_i, \overline{s}_{-i})$$

 Note that you only need to check pure strategies since mixed strategies yield a weighted average of payoffs among pure strategies

- Two Agents have equal share in a partnership
- Choose Effort: $a_i \in A_i = \{1, 2, 3\}$
- Total revenue: $R = 12a_1a_2$
- Cost to agent *i*: $C_i(a_i) = a_i^3$
- Payoff: $u_i(s) = R C_i(a_i) = 12a_1a_2 a_i^3$

Game matrix and Nash Equilibrium...

- This is NOT the only two NE
- Solve for MSE:

• For
$$s_2 = (p, 1 - p, 0) \in \Delta(A_2)$$

 $u_1(1, s_2) = 5p + 11(1 - p) = 11 - 6p$
• $-u_1(2, s_2) = 4p + 16(1 - p) = 16 - 12p$

- = $u_1(2, s_2) = 4p + 16(1-p) = 16 12p$
- Hence, $p = \frac{5}{6}$ • By symmetry, MSE is $s_1 = s_2 = \left(\frac{5}{6}, \frac{1}{6}, 0\right)$

Common Knowledge

- Common Knowledge of the Game
- Common Knowledge of Rationality
- Common Knowledge of Equilibrium

 Exercise: Is "九二共識" truly a consensus in terms of common knowledge?

- Use: Kakutani's Fixed Point Theorem (FPT) If S ⊆ Rⁿ is closed, bounded & convex and if φ is an upper hemi-continuous correspondence from S to S, such that φ(s) is non-empty and convex, then φ(s) has a fixed point.
- Proposition 9.1-1: Existence of NE (Nash, 1950)
- In a game with finite action sets, if players can choose either pure or mixed strategies, there exists a Nash Equilibrium.

- Consider a "simpler" version of FPT: If S₁, S₂ ⊆ **R** is closed, bounded and convex and φ₁(s₂), φ₂(s₁) are continuous functions from S_{-i} to S_i, then φ = (φ₁, φ₂) has a fixed point.
- Existence of Nash Equilibrium requires:
- Strategy sets are closed, bounded and convex,
- BR functions are indeed continuous...

Joseph Tao-yi Wang Games and Strategic Equilibrium

Joseph Tao-yi Wang Games and Strategic Equilibrium

Existence of Equil.: Continuous Action Space

For continuous action space (where each player chooses a pure strategy a_i), there exists a pure strategy NE in which player <u>1</u> plays a_1 and player <u>2</u> plays a_2 .

Existence of Equilibrium: For Non-unique BR

- Why do we need Kakutani's FPT?
- Because best response may not be unique!!!
- BR correspondences,
 Not only BR "functions"
- Upper hemi-continuous
 - Not "Continuous"

- Use: Kakutani's Fixed Point Theorem (FPT) If S ⊆ Rⁿ is closed, bounded & convex and if φ is an upper hemi-continuous correspondence from S to S, such that φ(s) is non-empty and convex, then φ(s) has a fixed point.
- Closed and Bounded
- Convex
- Upper hemi-continuous

• Closed

If
$$\{s^n, \} \in S$$
, $\lim_{n \to \infty} s^n = \overline{s} \in S$.

- Bounded $S \subseteq B(s,r), r < \infty$
 - Contained in a ball of radius r (centered at s)
- Convex If $s^0, s^1 \in C$, for $0 < \lambda < 1$, $s^{\lambda} = (1 - \lambda)s^0 + \lambda s^1 \in C$.

- $\phi(s)$ is upper hemicontinuous at \overline{s} if
- For any open neighborhood $V ext{ of } \phi(\overline{s})$
- There exists $N(\delta,\overline{s})$ a $\delta\text{-neighborhood of }\overline{s}$
- such that $\phi(s) \subseteq V$ for all $s \in N(\delta, \overline{s})$

- Using Kakutani's Fixed Point Theorem (FPT)
- Proposition 9.1-1: Existence of NE (Nash, 1950)
- In a game with finite action sets, if players can choose either pure or mixed strategies,
 - Mixed strategy profile (π_1 , π_2 ,..., π_n), $0 \leq \pi_i \leq 1$
 - Closed, bounded and convex
- there exists a Nash Equilibrium.
 - BR correspondence is non-empty, convex (mixing among BR is also BR), and upper hemi-continuous

- Proposition 9.1-2: Existence of pure NE
- In a game with action sets $A_i \subseteq \mathbb{R}^n$ is closed, bounded and convex, and utility u is continuous,
- If BR sets $BR_i(a_{-i}) \subseteq A_i$ are convex,
- there exists a pure strategy Nash Equilibrium.
- Corollary 9.1-3: Existence of pure NE
- If BR sets $BR_i(a_{-i}) \subseteq A_i$ are single-valued, or If $u_i(a_i, a_{-i})$ are **quasi-concave** over a_i
- there exists a pure strategy Nash Equilibrium.

Summary of 9.1

• Game Tree

- Extensive Form and Information Sets

- Simultaneous Game
 - Strategic Form (Normal Form)
- Nash Equilibrium
 - Existence of Nash Equilibrium (by Kakutani's FPT)
- HW 9.1: Riley 9.1-1~4