General Equilibrium for the Exchange Economy

Joseph Tao-yi Wang 2008/10/30

(Lecture 9, Micro Theory I)

What We Learned from the 2x2 Economy?

- Pareto Efficient Allocation (PEA)
 - Cannot make one better off without hurting others
- Walrasian Equilibrium (WE)
 - When Supply Meets Demand
 - Focus on Exchange Economy First
- 1st Welfare Theorem: WE is Efficient
- 2nd Welfare Theorem: Any PEA can be supported as a WE
- These also apply to the general case as well!

General Exchange Economy

- *n* Commodities: *1*, *2*, ..., *n*
- *H* Consumers: $h = 1, 2, \cdots, H$
 - Consumption Set: $X^h \subset \mathbb{R}^n$
 - Endowment: $\omega^h = (\omega_1^h, \cdots, \omega_n^h) \in X^h$
 - Consumption Vector: $x^h = (x_1^h, \cdots, x_n^h) \in X^h$
 - Utility Function: $U^h(x^h) = U^h(x_1^h, \cdots, x_n^h)$
 - Aggregate Consumption and Endowment:

$$x = \sum_{h=1}^{H} x^h$$
 and $\omega = \sum_{h=1}^{H} \omega^h$

• Edgeworth Cube (Hyperbox)

Feasible Allocation

- A allocation is feasible if
- The sum of all consumers' demand doesn't exceed aggregate endowment: $x \omega \le 0$
- A feasible allocation \overline{x} is Pareto efficient if
- there is no other feasible allocation x that is
- strictly preferred by at least one: $U^i(x^i) > U^i(\overline{x}^i)$
- and is weakly preferred by all: $U^h(x^h) \ge U^h(\overline{x}^h)$

Walrasian Equilibrium

h

- Price-taking: Prices $p \ge 0$
- Consumers: *h*=1, 2, ..., *H*
 - Endowment: $\omega^h = (\omega_1^h, \cdots, \omega_n^h)$ $\omega = \sum \omega^h$
 - Wealth: $W^h = p \cdot \omega^h$
 - Budget Set: $\{x^h \in X^h | p \cdot x^h \le W^h\}$
 - Consumption Set: $\overline{x}^h = (\overline{x}_1^h, \cdots, \overline{x}_n^h) \in X^h$
- Most Preferred Consumption: U^h(x̄^h) ≥ U^h(x^h) for all x^h such that p ⋅ x^h ≤ W^h
 Vector of Excess Demand: ē = x̄ - ω

Definition: Walrasian Equilibrium Prices

- The price vector $p \ge 0$ is a Walrasian Equilibrium price vector if
- there is no market in excess demand ($\overline{e} \leq 0$),
- and $p_j = 0$ for any market that is in excess supply ($\overline{e}_j < 0$).
- We are now ready to state and prove the "Adam Smith Theorem" (WE → PEA)...

Proposition 3.2-1: First Welfare Theorem

- If preferences of each consumer satisfies LNS, then the Walrasian Equilibrium allocation is Pareto efficient.
- Proof:
- 1. Since $U^h(x^h) > U^h(\overline{x}^h) \Rightarrow p \cdot x^h > p \cdot \omega^h$
- 2. By LNS, $U^h(x^h) \ge U^h(\overline{x}^h) \Rightarrow p \cdot x^h \ge p \cdot \omega^h$
- 3. Then, $\sum_{h} \left(p \cdot x^{h} p \cdot \omega^{h} \right) = p \cdot (x \omega) > 0$
- Which is not feasible $(x \omega > 0)$, since $p \ge 0$

First Welfare Theorem: WE \rightarrow PE

- 1. Why $U^h(x^h) > U^h(\overline{x}^h) \Rightarrow p \cdot x^h > p \cdot \omega^h$?
 - $\overline{x}^{h} \text{ solves } \max_{x^{h}} \left\{ U^{h}(x^{h}) | p \cdot x^{h} \le p \cdot \omega^{h} \right\}$
- 2. Why $U^h(x^h) \ge U^h(\overline{x}^h) \Rightarrow p \cdot x^h \ge p \cdot \omega^h$?
- Suppose not, then $p \cdot x^h$
- All bundles in sufficiently small neighborhood of x^h is in budget set $\{x^h \in X^h | p \cdot x^h \leq W^h\}$
- LNS requires $a \hat{x}^h$ in this neighborhood to have $U^h(\hat{x}^h) > U^h(x^h)$, a contradiction.

Lemma 3.2-2: Quasi-concavity of V

- If $U^h, h = 1, \cdots, H$ is quasi-concave,
- Then so is the indirect utility function

$$V^{i}(x) = \max_{x^{h}} \left\{ U^{i}(x^{i}) \middle| \sum_{h=1}^{H} x^{h} \le x, \right.$$

$$U^{h}(x^{h}) \ge U^{h}(\hat{x}^{h}), h \neq i \bigg\}$$

Lemma 3.2-2: Quasi-concavity of V

• Proof: Consider $V^i(b) \ge V^i(a)$, for any

 $\begin{aligned} c &= (1 - \lambda)a + \lambda b, \text{ need to show } V^i(c) \ge V^i(a) \\ \text{Assume } \{a^h\}_{h=1}^H \text{ solves } V^i(a), \\ \{b^h\}_{h=1}^H \text{ solves } V^i(b), \\ \{c^h\}_{h=1}^H \text{ is feasible since } c^h &= (1 - \lambda)a^h + \lambda b^h \\ \Rightarrow V^i(c) \ge U^i(c^i) \end{aligned}$

Now we only need to prove $U^i(c^i) \ge V^i(a)$.

Lemma 3.2-2: Quasi-concavity of V

• Since
$$\{a^h\}_{h=1}^H$$
 solves $V^i(a)$,
 $\{b^h\}_{h=1}^H$ solves $V^i(b)$,
 $U^i(a^i) = V^i(a)$ and $U^i(b^i) = V^i(b) \ge V^i(a)$
 $\Rightarrow U^i(c^i) \ge V^i(a)$ by quasi-concavity of U^i
 $\Rightarrow V^i(c) \ge U^i(c^i) \ge V^i(a)$
• Note: (By quasi-concavity of U^h)
 $U^h(a^h) \ge U^h(\hat{x}^h)$ for all $h \ne i$
 $U^h(b^h) \ge U^h(\hat{x}^h)$ for all $h \ne i$

- Suppose $X^h = \mathbb{R}^n_+$, and utility functions $U^h(\cdot)$
- continuous, quasi-concave, strictly monotonic.
 If {x̂^h}^H_{h=1} is Pareto efficient, then there exist a price vector p ≥ 0 such that

$$U^h(x^h) > U^h(\hat{x}^h) \Rightarrow p \cdot x^h > p \cdot \hat{x}^h$$

• Proof:

- Proof: Assume nobody has zero allocation
 - Relaxing this is easily done...
- By Lemma 3.2-2, $V^i(x)$ is quasi-concave
- $V^i(x)$ is strictly increasing since $U^i(\cdot)$ is also
 - (and any increment could be given to consumer *i*)
- Since $\{\hat{x}^h\}_{h=1}^H$ is Pareto efficient, $V^i(\omega) = U^i(\hat{x}^i)$
- Since $U^i(\cdot)$ is strictly increasing,

$$\sum_{h=1}^{H} \hat{x}^h = \omega$$

- Proof (Continued):
- Since ω is on the boundary of $\{x | V^i(x) \ge V^i(\omega)\}$
- By the Supporting Hyperplane Theorem, there exists a vector p ≠ 0 such that
 Vⁱ(x) > Vⁱ(ω) ⇒ p ⋅ x > p ⋅ ω
 and Vⁱ(x) ≥ Vⁱ(ω) ⇒ p ⋅ x ≥ p ⋅ ω
- Claim: p > 0, then, $U^h(x^h) \ge U^h(\hat{x}^h) \Rightarrow p \cdot \sum_{h=1}^H x^h \ge p \cdot \omega = p \cdot \sum_{h=1}^H \hat{x}^h$

- Proof (Continued):
- Why p > 0? If not, define $\delta = (\delta_1, \cdots, \delta_n) > 0$ such that $\delta_j > 0$ iff $p_j < 0$ (others = 0)

• Then, $V^i(\omega + \delta) > V^i(\omega)$ and $p \cdot (\omega + \delta)$

 Contradicting (result from the Surporting Hyperplane Theorem)

$$U^{h}(x^{h}) \ge U^{h}(\hat{x}^{h}) \Rightarrow p \cdot \sum_{h=1}^{n} x^{h} \ge p \cdot \omega$$

- Since $U^h(x^h) \ge U^h(\hat{x}^h) \Rightarrow p \cdot \sum_{h=1} x^h \ge p \cdot \sum_{h=1} \hat{x}^h$
- Set $x^k = \hat{x}^k, k \neq h$, then for consumer h $U^h(x^h) \ge U^h(\hat{x}^h) \Rightarrow p \cdot x^h \ge p \cdot \hat{x}^h$
- Need to show strict inequality implies strict...
- If not, then $U^h(x^h) > U^h(\hat{x}^h) \Rightarrow p \cdot x^h = p \cdot \hat{x}^h$
- Hence, $p \cdot \lambda x^h for all <math>\lambda \in (0, 1)$
- U^h continuous $\Rightarrow U^h(\lambda x^h) > U^h(\hat{x}^h)$ for large λ
- Contradiction!

Summary of 3.2

- Pareto Efficiency:
 - Cannot make one better off without hurting others
- Walrasian Equilibrium: market clearing prices
- Welfare Theorems:
 - First: Walrasian Equilibrium is Pareto Efficient
 - Second: Pareto Efficient allocations can be supported as Walrasian Equilibria (with transfer)
- Homework: Riley 3.2-1~3
- J/R 5.19, 5.27