Shadow Prices

Joseph Tao-yi Wang 2009/9/18
(Lecture 1, Micro Theory I)

A Peak-Load Pricing Problem

- Consider the problem faced by Chunghwa Telecom (CHT):
- By building base stations, CHT can provide cell phone service to a certain region
- An establish network can provide service both in the day and during the night
- Marginal cost is low (zero?!); setup cost is huge
- Marketing research reveal unbalanced demand...
- Day - peak; Night - off-peak (or vice versa?)

A Peak－Load Pricing Problem

－If you are the CEO of CHT，how would you price day and night usage of your service？
－The same or different？
－Economic intuition should tell you to set off－ peak prices lower than peak prices
－But how low？
－FET＇s Big Broadband Service（遠傳大寬頻） faced a similar problem recently．．．

More on Peak-Load Pricing

- Other similar problems include:
- How should Taipower price electricity in the summer and winter?
- How should a theme park set its ticket prices for weekday and weekends?
- Even if demand estimations are available, you will still need to do some math to find optimal prices...
- Either to maximize profit or social welfare

A Peak-Load Pricing Problem

- Back to CHT:
- Capacity constraints:

$$
q_{j} \leq q_{0}, j=1, \ldots, n
$$

- CHT's Cost function:

$$
C\left(q_{0}, q\right)=F+c_{0} q_{0}+c \cdot q
$$

- Demand for cell phone service:

Demand $p_{j}(q)$, Total Revenue $R(q)=p \cdot q$

A Peak-Load Pricing Problem

- The monopolist profit maximization problem:
- How do you solve this problem?
- When does FOC guarantee a solution?
- What does the Lagrange multiplier mean?
- What should you do when FOC "fails"?

Need:

Lagrange Multiplier Method

1. Write Constraints as $h_{i}(x) \geq 0, i=1, \ldots, m$

$$
h(x)=\left(h_{1}(x), \ldots, h_{m}(x)\right)
$$

2. Shadow prices $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$

- Lagrangian $\mathfrak{L}(x, \lambda)=f(x)+\lambda \cdot h(x)$
- FOC:

$$
\frac{\partial \mathfrak{L}}{\partial x_{j}}=\frac{\partial f}{\partial x_{j}}+\lambda \cdot \frac{\partial h}{\partial x_{j}} \leq 0, \text { with equality if } \bar{x}_{j}>0 .
$$

$\frac{\partial \mathfrak{L}}{\partial \lambda_{i}}=h_{i}(\bar{x}) \geq 0$, with equality if $\lambda_{i}>0$.

Solving Peak-Load Pricing

- The monopolist profit maximization problem:
- The Lagrangian is

$$
\begin{aligned}
\mathfrak{L}\left(q_{0}, q\right) & =R(q)-F-c_{0} q_{0}-\sum_{j=1}^{n} c_{j} q_{j}+\sum_{j=1}^{n} \lambda_{j}\left(q_{0}-q_{j}\right) \\
& \left.=R(q)-\sum_{j=1}^{n}\left(c_{j}+\lambda_{j}\right) q_{j}+\left(\sum_{j=1}^{n} \lambda_{j}-c_{0}\right) q_{0}-F\right)
\end{aligned}
$$

Solving Peak-Load Pricing

- FOC:

$$
\frac{\partial \mathfrak{L}}{\partial q_{j}}=M R_{j}-c_{j}-\lambda_{j} \leq 0, \text { with equality if } q_{j}>0 .
$$

$$
\frac{\partial \mathfrak{L}}{\partial q_{0}}=\sum_{j=1}^{n} \lambda_{j}-c_{0} \leq 0, \text { with equality if } q_{0}>0 .
$$

$$
\frac{\partial \mathfrak{L}}{\partial \lambda_{j}}=q_{0}-q_{j} \geq 0, \text { with equality if } \lambda_{j}>0 .
$$

Solving Peak-Load Pricing

- For positive production, FOC becomes:

$$
\frac{\partial \mathfrak{L}}{\partial q_{j}}=M R_{j}-c_{j}-\lambda_{j}=0, \text { since } q_{j}>0 .
$$

$$
\frac{\partial \mathfrak{L}}{\partial q_{0}}=\sum_{j=1}^{n} \lambda_{j}-c_{0}=0, \text { since } q_{0}>0 .
$$

$$
\frac{\partial \mathfrak{L}}{\partial \lambda_{j}}=q_{0}-q_{j} \geq 0, \text { with equality if } \lambda_{j}>0
$$

Solving Peak-Load Pricing

- Meaning of FOC:

$$
\frac{\partial \mathfrak{L}}{\partial q_{j}}=M R_{j}-c_{j}-\lambda_{j}=0, \text { since } q_{j}>0
$$

$$
\frac{\partial \mathfrak{L}}{\partial q_{0}}=\sum_{j=1}^{n} \lambda_{j}-c_{0}=0, \text { since } q_{0}>0
$$

$$
\frac{\partial \mathfrak{L}}{\partial \lambda_{j}}=q_{0}-q_{j} \geq 0, \text { with equality if } \lambda_{j}>0
$$

Solving Peak-Load Pricing

- Meaning of FOC:

$$
\begin{aligned}
& \frac{\partial \mathfrak{L}}{\partial q_{j}}=M R_{j}-c_{j}-\lambda_{j}=0, \begin{array}{l}
\text { Hit capacity } \\
\text { at positive } \\
\text { shadow price! }
\end{array} \\
& \frac{\partial \mathfrak{L}}{\partial q_{0}}=\sum_{j=1}^{n} \lambda_{j}-c_{0}=0, \text { Off-peak shadow price }=0 \\
& \frac{\partial \mathfrak{L}}{\partial \lambda_{j}}=q_{0}-q_{j} \geq 0, \text { with equality if } \lambda_{j}>0 .
\end{aligned}
$$

Solving Peak-Load Pricing

- Meaning of FOC: Peak MR=MC+capacity cost $\frac{\partial \mathfrak{L}}{\partial q_{j}}=M R_{j}-c_{j}-\lambda_{j}=0, M R_{i}(\bar{q})=c_{i}+\lambda_{i}$ $\frac{\partial \mathfrak{L}}{\partial q_{0}}=\sum_{j=1}^{n} \lambda_{j}-c_{0}=0 \begin{aligned} & \text { Peak periods share capacity } \\ & \text { cost via shadow price }\end{aligned}$

Off-peak: MR=MC!
$M R_{j}(\bar{q})=c_{j}$ equality if $\lambda_{j}>0$.

Solving Peak-Load Pricing

- Economic Insight of FOC:
- Marginal decision of the manager: $M R=M C$
- Off-peak: MR=operating MC
- Since didn't hit capacity
- Peak: Need to increase capacity
- MR of all peak periods = cost of additional capacity + operating MC of all peak periods
- What's the theory behind this?

Constrained Optimization: Economic Intuition

- Single Constraint Problem:

$$
\operatorname{Max}_{x}\{f(x) \mid x \geq 0, b-g(x) \geq 0\}
$$

- Interpretation: a profit maximizing firm
- Produce non-negative output $x \geq 0$
- Subject to resource constraint $g(x) \leq b$
- Example: linear constraint $a \cdot x=\sum_{j=1}^{n} a_{j} x_{j} \leq b$ Each unit of x_{j} requires a_{j} units of resource b.

Constrained Optimization: Economic Intuition

- Single Constraint Problem:

$$
\operatorname{Max}\{f(x) \mid x \geq 0, b-g(x) \geq 0\}
$$

- Interpretation: a utility maximizing consumer
- Consume non-negative input $x \geq 0$
- Subject to budget constraint $g(x) \leq b$
- Example: linear constraint $a \cdot x=\sum_{j=1}^{n} a_{j} x_{j} \leq b$ Each unit of x_{j} requires a_{j} units of currency b.

Constrained Optimization: Economic Intuition

- Suppose \bar{x} solves the problem
- If increases x_{j}, profit changes by $\frac{\partial f}{\partial x_{j}}$
- Additional resources needed: $\frac{\partial g}{\partial x_{j}}$
- Cost of additional resources: $\lambda \frac{\partial g}{\partial x_{j}}$

Net gain to increasing x_{j} is $\frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x})$

Necessary Conditions for \bar{X}_{j}

- If \bar{x}_{j} is strictly positive, marginal net gain $=0$
- i.e. $\bar{x}_{j}>0 \Rightarrow \frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x})=0$
- If \bar{x}_{j} is zero, marginal net gain ≤ 0

$$
\text { - i.e. } \bar{x}_{j}=0 \Rightarrow \frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x}) \leq 0
$$

$$
\frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x}) \leq 0 \text { with equality if } \bar{x}_{j}>0 .
$$

Necessary Conditions for \bar{X}_{j}

- If resources doesn't bind, opportunity cost $\lambda=0$
- i.e. $b-g(\bar{x})>0 \Rightarrow \lambda=0$
- Or, in other words,

$$
b-g(\bar{x}) \geq 0 \text { with equality if } \lambda>0
$$

- This is logically equivalent to the first statement.

Lagrange Multiplier Method

1. Write constraint as $h(x) \geq 0$
2. Lagrange multiplier $=$ shadow price λ

- Lagrangian $\mathfrak{L}(x, \lambda)=f(x)+\lambda \cdot h(x)$
- FOC:

$$
\frac{\partial \mathfrak{L}}{\partial x_{j}}=\frac{\partial f}{\partial x_{j}}+\lambda \cdot \frac{\partial h}{\partial x_{j}} \leq 0, \text { with equality if } \bar{x}_{j}>0 .
$$

$$
\frac{\partial \mathfrak{L}}{\partial \lambda}=h(\bar{x}) \geq 0, \text { with equality if } \lambda>0
$$

Example 1

- A consumer problem:
$\operatorname{Max}\left\{f(x)=\ln x_{1} x_{2} \mid x \geq 0, h(x)=2-x_{1}-x_{2} \geq 0\right\}$

Example 1

- Maximum at $\bar{x}=(1,1)$
- Lagrangian $\mathfrak{L}(x, \lambda)=\ln x_{1}+\ln x_{2}+\lambda\left(2-x_{1}-x_{2}\right)$
- FOC

$$
\frac{\partial \mathfrak{L}}{\partial x_{j}}=\frac{1}{x_{j}}+\lambda \leq 0, \text { with equality if } \bar{x}_{j}>0 .
$$

$$
\frac{\partial \mathfrak{L}}{\partial \lambda}=2-x_{1}-x_{2} \geq 0, \text { with equality if } \lambda>0
$$

Lagrange Multiplier Method with Multiple Constraints

1. Write Constraints as $h_{i}(x) \geq 0, i=1, \ldots, m$

$$
h(x)=\left(h_{1}(x), \ldots, h_{m}(x)\right)
$$

2. Shadow prices $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$

- Lagrangian $\mathfrak{L}(x, \lambda)=f(x)+\lambda \cdot h(x)$
- FOC:

$$
\frac{\partial \mathfrak{L}}{\partial x_{j}}=\frac{\partial f}{\partial x_{j}}+\lambda \cdot \frac{\partial h}{\partial x_{j}} \leq 0, \text { with equality if } \bar{x}_{j}>0 .
$$

$\frac{\partial \mathfrak{L}}{\partial \lambda_{i}}=h_{i}(\bar{x}) \geq 0$, with equality if $\lambda_{i}>0$.

When Intuition Breaks Down? Example 2

- A "new" problem:
$\operatorname{Max}_{x}\left\{f(x)=\ln x_{1} x_{2} \mid x \geq 0, h(x)=\left(2-x_{1}-x_{2}\right)^{3} \geq 0\right\}$

When Intuition Breaks Down? Example 2

- Lagrangian $\mathfrak{L}(x, \lambda)=\ln x_{1}+\ln x_{2}+\lambda\left(2-x_{1}-x_{2}\right)^{3}$
- FOC is violated!

$$
\frac{\partial \mathfrak{L}}{\partial x_{j}}=\frac{1}{x_{j}}-3 \lambda\left(2-x_{1}-x_{2}\right)^{2}=1 \text { at } \bar{x}=(1,1)
$$

- How could this be?
- Because "linearization" fails if gradient $=0 \ldots$

$$
\frac{\partial h}{\partial x}=0 \text { at } \bar{x}=(1,1)
$$

$$
\bar{h}(x)=h(\bar{x})+\frac{\partial h}{\partial x}(\bar{x}) \cdot(x-\bar{x})=h(1,1)=0
$$

Other Breaks Down? Example 3

$$
\underset{h(x)=\left(2-x_{1}\right)^{3}-x_{2} \geq 0}{\operatorname{Max}\left\{f(x)=12 x_{1}+x_{2} \mid x \geq 0, h(x)=\left(2-x_{1}\right)^{3}-x_{2} \geq 0\right\}}
$$

Other Breaks Down? Example 3

- Lagrangian $\mathfrak{L}(x, \lambda)=12 x_{1}+x_{2}+\lambda\left[\left(2-x_{1}\right)^{3}-x_{2}\right]$
- FOC is violated!

$$
\frac{\partial \mathfrak{L}}{\partial x_{1}}=12-3 \lambda\left(2-\bar{x}_{1}\right)^{2}=12 \text { at } \bar{x}=(2,0)
$$

- What's the problem this time?
- Not the gradient... ∂h

$$
\frac{\partial n}{\partial x}(\bar{x})=(0,-1)
$$

- "Linearized feasible set" has no interior...

Other Breaks Down? Example 3

- What's the problem this time?
- Gradient is $\frac{\partial h}{\partial x}(\bar{x})=(0,-1)$
- Hence, the linear approximation of the constraint is:

$$
\begin{aligned}
\frac{\partial h}{\partial x}(\bar{x}) \cdot(x-\bar{x}) & =\frac{\partial h}{\partial x_{1}}(\bar{x}) \cdot\left(x_{1}-2\right)+\frac{\partial h}{\partial x_{2}}(\bar{x}) \cdot x_{2} \\
& =-x_{2} \geq 0 \Rightarrow x_{2}=0
\end{aligned}
$$

Other Breaks Down? Example 3

$$
\operatorname{Max}_{x}\left\{f(x)=12 x_{1}+x_{2} \mid x \geq 0, h(x)=\left(2-x_{1}\right)^{3}-x_{2} \geq 0\right\}
$$

Linearized feasible set

Linearized Feasible Set \bar{X}

- Set of constraints binding at $\bar{x}: h_{i}(\bar{x})=0$
- For $i \in B=\left\{i \mid i=1, \ldots, m, h_{i}(\bar{x})=0\right\}$
- Replace binding constraints by linear approx.

$$
\bar{h}_{i}(x)=h_{i}(\bar{x})+\frac{\partial h_{i}}{\partial x}(\bar{x}) \cdot(x-\bar{x}) \geq 0
$$

- Since these constraints also bind, we have

$$
\frac{\partial h_{i}}{\partial x}(\bar{x}) \cdot(x-\bar{x}) \geq 0, \quad i \in B
$$

- Because $h_{i}(\bar{x})=0$

Linearized Feasible Set \bar{X}

- Note: These are "true" constraints if gradient $\frac{\partial h_{i}}{\partial x}(\bar{x}) \neq 0$
- $\bar{X}=$ Linearized Feasible Set
= Set of non-negative vectors satisfying

$$
\frac{\partial h_{i}}{\partial x}(\bar{x}) \cdot(x-\bar{x}) \geq 0, \quad i \in B
$$

Constraint Qualifications

- Set of feasible vectors:

$$
X=\left\{x \mid x \geq 0, h_{i}(x) \geq 0\right\}
$$

- The Constraint Qualifications hold at $\bar{x} \in X$ if
(i) Binding constraints have non-zero gradients

$$
\frac{\partial h_{i}}{\partial x}(\bar{x}) \neq 0
$$

(ii) The linearized feasible set \bar{X} at \bar{x} has a non-empty interior.

- CQ guarantees FOC to be necessary conditions

Proposition 1.2-1 Kuhn-Tucker Conditions (FOC)

- Suppose \bar{x} solves $\max \{f(x) \mid x \in X\}, X=$ feasib
- If the constraint qualifications hold at \bar{x}
- Then there exists shadow price vector $\lambda \geq 0$
- Such that (for $j=1, \ldots, n, i=1, \ldots m$)

$$
\frac{\partial \mathfrak{L}}{\partial x_{j}}(\bar{x}, \lambda) \leq 0, \text { with equality if } \bar{x}_{j}>0 .
$$

$$
\frac{\partial \mathfrak{L}}{\partial \lambda_{i}}(\bar{x}, \lambda) \geq 0, \text { with equality if } \lambda_{i}>0
$$

Lemma 1.2-2
 [Special Case] Quasi-Concave

- If for each binding constraint at \bar{x}, h_{i} is quasiconcave and $\frac{\partial h_{i}}{\partial x}(\bar{x}) \neq 0$
- Then, $X \subset \bar{X}$
- Tangent Hyperplanes = Supporting Hyperplanes!
- Hence, if X has a non-empty interior, then so does the linearized set \bar{X}
- Thus we have...

Proposition 1.2-3 [Quasi-Concave] Constraint Qualifications

- Suppose feasible set has non-empty interior

$$
X=\left\{x \mid x \geq 0, h_{i}(x) \geq 0\right\}
$$

- The Constraint Qualifications hold at $\bar{x} \in X$ if
- Binding constraints h_{i} is quasi-concave, and

$$
\frac{\partial h_{i}}{\partial x}(\bar{x}) \neq 0
$$

Proposition 1.2-4 Sufficient Conditions

- \bar{x} solves

$$
\max _{x}\left\{f(x) \mid x \geq 0, h_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

- If f and $h_{i}, i=1, \ldots, m$ are quasi-concave,
- The Kuhn-Tucker conditions hold at \bar{x},
- Binding constraints have $\frac{\partial h_{i}}{\partial x}(\bar{x}) \neq 0$
- And $\frac{\partial f}{\partial x}(\bar{x}) \neq 0$.

Summary of 1.2

- Consumer = Producer
- Lagrange multiplier = Shadow prices
- $\mathrm{FOC}=$ " MR - MB = 0": Kuhn-Tucker
- When does this intuition fail?
- Gradient = 0
- Linearized feasible set has no interior
\rightarrow Constraint Qualification: when it flies...
- CQ for quasi-concave constraints
- Sufficient Conditions (Proof in Section 1.4)

Summary of 1.5

- Peak-Load Pricing requires Kuhn-Tucker
- MR="effective" MC
- Off-peak shadow price (for capacity) $=0$
- All peak periods share additional capacity cost
- Can you think of situations (after you start your new job making \$\$\$\$) that requires something similar to peak-load pricing?
- Homework: J/R: A2.25, A2.28, A2.32-34 Riley: 1.2-1, 1.2-3, 1.5-1~3

