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A Peak-Load Pricing Problem

� Consider the problem faced by Chunghwa 
Telecom (CHT):

� By building base stations, CHT can provide 
cell phone service to a certain region
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cell phone service to a certain region
� An establish network can provide service both in 

the day and during the night
� Marginal cost is low (zero?!); setup cost is huge

� Marketing research reveal unbalanced 
demand…
� Day – peak; Night – off-peak (or vice versa?)



A Peak-Load Pricing Problem

� If you are the CEO of CHT, how would you 
price day and night usage of your service?
� The same or different?

� Economic intuition should tell you to set off-
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� Economic intuition should tell you to set off-
peak prices lower than peak prices
� But how low?

� FET’s Big Broadband Service (遠傳大寬頻) 
faced a similar problem recently…



More on Peak-Load Pricing

� Other similar problems include:
� How should Taipower price electricity in the 

summer and winter?
� How should a theme park set its ticket prices for 
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� How should a theme park set its ticket prices for 
weekday and weekends?

� Even if demand estimations are available, 
you will still need to do some math to find 
optimal prices…
� Either to maximize profit or social welfare



� Back to CHT:
� Capacity constraints:

A Peak-Load Pricing Problem

� CHT’s Cost function:

� Demand for cell phone service:
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Demand ( ),  Total Revenue ( )jp q R q p q= ⋅



A Peak-Load Pricing Problem

� The monopolist profit maximization problem:
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� How do you solve this problem?
� When does FOC guarantee a solution?
� What does the Lagrange multiplier mean?
� What should you do when FOC “fails”?



Need: 
Lagrange Multiplier Method

1. Write Constraints as

2. Shadow prices
� Lagrangian

1( ,..., )mλ λ λ=
( ) ( )( , )x f x h xλ λ= + ⋅L

( ) 0, 1,...,ih x i m≥ =
( )1( ) ( ),..., ( )mh x h x h x=
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� Lagrangian
� FOC:

0,  with equality if 0.j
j j j

f h
x

x x x
λ∂ ∂ ∂= + ⋅ ≤ >

∂ ∂ ∂
L

( ) ( )( , )x f x h xλ λ= + ⋅L

( ) 0,  with equality if 0.i i
i

h x λ
λ

∂ = ≥ >
∂
L



Solving Peak-Load Pricing

� The monopolist profit maximization problem:

� The Lagrangian is
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� The Lagrangian is

( )0 0 0 0
1 1

( , ) ( )
n n

j j j j
j j

q q R q F c q c q q qλ
= =

= − − − + −∑ ∑L

0 0
1 1

             ( ) ( )
n n

j j j j
j j

R q c q c q Fλ λ
= =

 
= − + + − − 

 
∑ ∑



Solving Peak-Load Pricing

� FOC:

0,  with equality if 0.j j j j
j

MR c q
q

λ∂ = − − ≤ >
∂
L
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0 0,  with equality if 0.j j
j

q q λ
λ

∂ = − ≥ >
∂
L

0 0
10

0,  with equality if 0.
n

j
j

c q
q

λ
=

∂ = − ≤ >
∂ ∑
L



Solving Peak-Load Pricing

� For positive production, FOC becomes:

0,  with equality if 0.j j j j
j

MR c q
q

λ∂ = − − ≤ >
∂
L

0,  since 0.j j j j
j

MR c q
q

λ∂ = − − = >
∂
L
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0 0,  with equality if 0.j j
j

q q λ
λ

∂ = − ≥ >
∂
L

0 0
10

0,  with equality if 0.
n

j
j

c q
q

λ
=

∂ = − ≤ >
∂ ∑
L

0 0
10

0,  since 0.
n

j
j

c q
q

λ
=

∂ = − = >
∂ ∑
L



Solving Peak-Load Pricing

� Meaning of FOC:

0,  since 0.j j j j
j

MR c q
q

λ∂ = − − = >
∂
L

At least 1 
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0 0,  with equality if 0.j j
j

q q λ
λ

∂ = − ≥ >
∂
L

0 0
10

0,  since 0.
n

j
j

c q
q

λ
=

∂ = − = >
∂ ∑
L

At least 1 
period has 
shadow 
price > 0!



Solving Peak-Load Pricing

� Meaning of FOC:

0,  since 0.j j j j
j

MR c q
q

λ∂ = − − = >
∂
L Hit capacity 

at positive 
shadow price!
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0 0,  with equality if 0.j j
j

q q λ
λ

∂ = − ≥ >
∂
L

0 0
10

0,  since 0.
n

j
j

c q
q

λ
=

∂ = − = >
∂ ∑
L

shadow price!

Off-peak shadow price = 0



Solving Peak-Load Pricing

� Meaning of FOC:

0,  since 0.j j j j
j

MR c q
q

λ∂ = − − = >
∂
L

Peak MR=MC+capacity cost

( )i i iMR q c λ= +
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0 0,  with equality if 0.j j
j

q q λ
λ

∂ = − ≥ >
∂
L

0 0
10

0,  since 0.
n

j
j

c q
q

λ
=

∂ = − = >
∂ ∑
L Peak periods share capacity 

cost via shadow price

Off-peak: 
MR=MC!

( )j jMR q c=



Solving Peak-Load Pricing

� Economic Insight of FOC:
� Marginal decision of the manager: MR=MC
� Off-peak: MR=operating MC

Since didn’t hit capacity
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� Since didn’t hit capacity

� Peak: Need to increase capacity
� MR of all peak periods = cost of additional capacity 

+ operating MC of all peak periods

� What’s the theory behind this?



Constrained Optimization: 
Economic Intuition

� Single Constraint Problem:

� Interpretation: a profit maximizing firm
Produce non-negative output 0x ≥

{ }Max ( ) | 0, ( ) 0
x

f x x b g x≥ − ≥
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� Produce non-negative output
� Subject to resource constraint

� Example: linear constraint

0x ≥
( )g x b≤

Each unit of  requires  units of resource .j jx a b
1

n

j j
j

a x a x b
=

⋅ = ≤∑



Constrained Optimization: 
Economic Intuition

� Single Constraint Problem:

� Interpretation: a profit maximizing firm
Produce non-negative output 0x ≥

{ }Max ( ) | 0, ( ) 0
x

f x x b g x≥ − ≥
a utility maximizing consumer

Consume non-negative input
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� Produce non-negative output
� Subject to resource constraint

� Example: linear constraint

0x ≥
( )g x b≤

Each unit of  requires  units of resource .j jx a b
1

n

j j
j

a x a x b
=

⋅ = ≤∑

Consume non-negative input

Subject to budget constraint

currency



Constrained Optimization: 
Economic Intuition

� Suppose     solves the problem
� If increases     , profit changes by

Additional resources needed:
g∂

j

f

x

∂
∂

x

jx
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� Additional resources needed:

� Cost of additional resources:
� (Market (or shadow) price is    )

j

g

x

∂
∂

λ

( ) ( )Net gain to increasing  is j
j j

f g
x x x

x x
λ∂ ∂−

∂ ∂

j

g

x
λ ∂

∂



Necessary Conditions for 

� If     is strictly positive, marginal net gain 
� i.e.

� If     is zero, marginal net gain

( ) ( )0 0j
j j

f g
x x x

x x
λ∂ ∂> ⇒ − =

∂ ∂
0≤

jx

x

0=

jx
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� If     is zero, marginal net gain
� i.e.

( ) ( ) 0 with equality if 0.j
j j

f g
x x x

x x
λ∂ ∂− ≤ >

∂ ∂

0≤
( ) ( )0 0j

j j

f g
x x x

x x
λ∂ ∂= ⇒ − ≤

∂ ∂

jx



Necessary Conditions for 

� If resources doesn’t bind, opportunity cost 
� i.e.

� Or, in other words,

( ) 0 0b g x λ− > ⇒ =
0λ =

jx

19

� Or, in other words,

� This is logically equivalent to the first statement.

( ) 0 with equality if 0.b g x λ− ≥ >



Lagrange Multiplier Method 

1. Write constraint as
2. Lagrange multiplier = shadow price
� Lagrangian

λ
( ) ( )( , )x f x h xλ λ= + ⋅L

( ) 0h x ≥
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� FOC:

0,  with equality if 0.j
j j j

f h
x

x x x
λ∂ ∂ ∂= + ⋅ ≤ >

∂ ∂ ∂
L

( ) 0,  with equality if 0.h x λ
λ

∂ = ≥ >
∂
L



Example 1

� A consumer problem:
{ }1 2 1 2Max ( ) ln | 0, ( ) 2 0

x
f x x x x h x x x= ≥ = − − ≥

2x
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0 (1,1)x =

1 2( ) 2 0h x x x= − − ≥
0( ) ( )f x f x=

1x



Example 1

� Maximum at 
� Lagrangian
� FOC

(1,1)x =

1 2 1 2( , ) ln ln (2 )x x x x xλ λ= + + − −L

1∂

22

1
0,  with equality if 0.j

j j

x
x x

λ∂ = + ≤ >
∂
L

1 22 0,  with equality if 0.x x λ
λ

∂ = − − ≥ >
∂
L



Lagrange Multiplier Method 
with Multiple Constraints

1. Write Constraints as

2. Shadow prices
� Lagrangian

1( ,..., )mλ λ λ=
( ) ( )( , )x f x h xλ λ= + ⋅L

( ) 0, 1,...,ih x i m≥ =
( )1( ) ( ),..., ( )mh x h x h x=
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� Lagrangian
� FOC:

0,  with equality if 0.j
j j j

f h
x

x x x
λ∂ ∂ ∂= + ⋅ ≤ >

∂ ∂ ∂
L

( ) ( )( , )x f x h xλ λ= + ⋅L

( ) 0,  with equality if 0.i i
i

h x λ
λ

∂ = ≥ >
∂
L



When Intuition Breaks Down?
Example 2

� A “new” problem:
( ){ }3

1 2 1 2Max ( ) ln | 0, ( ) 2 0
x

f x x x x h x x x= ≥ = − − ≥

2x
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0 (1,1)x =

( )3

1 2( ) 2 0h x x x= − − ≥

0( ) ( )f x f x=

2x

1x



When Intuition Breaks Down?
Example 2

� Lagrangian
� FOC is violated!

3
1 2 1 2( , ) ln ln (2 )x x x x xλ λ= + + − −L

( )2

1 2

1
3 2 1 at (1,1)x x x

x x
λ∂ = − − − = =

∂
L
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� How could this be?
� Because “linearization” fails if gradient = 0…

( )1 23 2 1 at (1,1)
j j

x x x
x x

λ= − − − = =
∂

0 at (1,1)
h

x
x

∂ = =
∂

( ) ( ) ( ) ( ) (1,1) 0
h

h x h x x x x h
x

∂= + ⋅ − = =
∂



Other Breaks Down?
Example 3

( ){ }3

1 2 1 2Max ( ) 12 | 0, ( ) 2 0
x

f x x x x h x x x= + ≥ = − − ≥

( ) ( )f x f x=2x

26( )3

1 2( ) 2 0h x x x= − − ≥

(2,0)x =

1x



Other Breaks Down?
Example 3

� Lagrangian
� FOC is violated!

3
1 2 1 2( , ) 12 (2 )x x x x xλ λ  = + + − − L

( )2

112 3 2 12 at (2,0)x x
x

λ∂ = − − = =
∂
L
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� What’s the problem this time?
� Not the gradient…

� “Linearized feasible set” has no interior…

( )1
1

12 3 2 12 at (2,0)x x
x

λ= − − = =
∂

( ) (0, 1)
h

x
x

∂ = −
∂



Other Breaks Down?
Example 3

� What’s the problem this time?
� Gradient is ( ) (0, 1)

h
x

x

∂ = −
∂

28

� Hence, the linear approximation of the 
constraint is:

1 2
1 2

2 2

( ) ( ) ( ) ( 2) ( )

0 0

h h h
x x x x x x x

x x x

x x

∂ ∂ ∂⋅ − = ⋅ − + ⋅
∂ ∂ ∂

= − ≥ ⇒ =



Other Breaks Down?
Example 3

( ){ }3

1 2 1 2Max ( ) 12 | 0, ( ) 2 0
x

f x x x x h x x x= + ≥ = − − ≥

2x
( ) ( )f x f x=

29( )3

1 2( ) 2 0h x x x= − − ≥

(2,0)x =

1x
Linearized feasible set



Linearized Feasible Set 

� Set of constraints binding at    : 
� For 

� Replace binding constraints by linear approx.
h∂

{ }| 1,..., , ( ) 0ii B i i m h x∈ = = =

X

x ( ) 0ih x =
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� Since these constraints also bind, we have

� Because              

( ) ( ) ( ) ( ) 0i
i i

h
h x h x x x x

x

∂= + ⋅ − ≥
∂

( ) ( ) 0,   ih
x x x i B

x

∂ ⋅ − ≥ ∈
∂

( ) 0ih x =



Linearized Feasible Set 

� Note: These are “true” constraints if gradient

� = Linearized Feasible Set

X

X

( ) 0ih
x

x

∂ ≠
∂
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� = Linearized Feasible Set
= Set of non-negative vectors satisfying

( ) ( ) 0,   ih
x x x i B

x

∂ ⋅ − ≥ ∈
∂

X



Constraint Qualifications 

� Set of feasible vectors:

� The Constraint Qualifications hold at          ifx X∈
{ }| 0, ( ) 0iX x x h x= ≥ ≥
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(i) Binding constraints have non-zero gradients

(ii) The linearized feasible set     at    has a 
non-empty interior.

� CQ guarantees FOC to be necessary conditions

x

( ) 0ih
x

x

∂ ≠
∂

X



Proposition 1.2-1
Kuhn-Tucker Conditions (FOC)

� Suppose    solves
� If the constraint qualifications hold at
� Then there exists shadow price vector 0λ ≥

{ }max ( ) | , feasible set
x

f x x X X∈ =x

x
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� Such that (for                            )

( , ) 0,  with equality if 0.j
j

x x
x

λ∂ ≤ >
∂
L

( ), 0,  with equality if 0.i
i

x λ λ
λ

∂ ≥ >
∂
L

1,..., , 1,...j n i m= =



Lemma 1.2-2
[Special Case] Quasi-Concave 

� If for each binding constraint at    ,    is quasi-
concave and

Then, X X⊂

( ) 0ih
x

x

∂ ≠
∂

x ih
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� Then,
� Tangent Hyperplanes = Supporting Hyperplanes!

� Hence, if    has a non-empty interior, then so 
does the linearized set
� Thus we have…

X X⊂

X
X



Proposition 1.2-3 [Quasi-Concave]
Constraint Qualifications

� Suppose feasible set has non-empty interior

� The Constraint Qualifications hold at          ifx X∈
{ }| 0, ( ) 0iX x x h x= ≥ ≥
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� Binding constraints     is quasi-concave, andih

( ) 0ih
x

x

∂ ≠
∂



Proposition 1.2-4
Sufficient Conditions

� solves

� If    and                     are quasi-concave, 

x

{ }max ( ) | 0, ( ) 0, 1,...,i
x

f x x h x i m≥ ≥ =

f , 1,...,ih i m=
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� If    and                     are quasi-concave, 
� The Kuhn-Tucker conditions hold at   ,

� Binding constraints have

� And                  .

f
x

, 1,...,ih i m=

( ) 0
f

x
x

∂ ≠
∂

( ) 0ih
x

x

∂ ≠
∂



Summary of 1.2

� Consumer = Producer
� Lagrange multiplier = Shadow prices
� FOC = “MR – MB = 0”: Kuhn-Tucker
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� When does this intuition fail?
� Gradient = 0
� Linearized feasible set has no interior

�Constraint Qualification: when it flies…
� CQ for quasi-concave constraints

� Sufficient Conditions (Proof in Section 1.4)



Summary of 1.5

� Peak-Load Pricing requires Kuhn-Tucker
� MR=“effective” MC
� Off-peak shadow price (for capacity) = 0
� All peak periods share additional capacity cost
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� All peak periods share additional capacity cost
� Can you think of situations (after you start 

your new job making $$$$) that requires 
something similar to peak-load pricing?

� Homework: J/R: A2.25, A2.28, A2.32-34
� Riley: 1.2-1, 1.2-3, 1.5-1~3


