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A Peak-Load Pricing Problem

e Consider the problem faced by Chunghwa
Telecom (CHT):

e By building base stations, CHT can provide
cell phone service to a certain region

An establish network can provide service both in
the day and during the night

Marginal cost is low (zero?!); setup cost is huge

e Marketing research reveal unbalanced
demand...

Day — peak; Night — off-peak (or vice versa?)




A Peak-Load Pricing Problem

e If you are the CEO of CHT, how would you
price day and night usage of your service?
The same or different?
e Economic intuition should tell you to set off-
peak prices lower than peak prices
But how low?
e FET's Big Broadband Service (i i# < & #f)
faced a similar problem recently...




More on Peak-Load Pricing

e Other similar problems include:

How should Taipower price electricity in the
summer and winter?

How should a theme park set its ticket prices for
weekday and weekends?
e Even if demand estimations are available,
you will still need to do some math to find
optimal prices...

Either to maximize profit or social welfare




A Peak-Load Pricing Problem

e Back to CHT:
e Capacity constraints:
;i < qo,)=1,...,n
e CHT’s Cost function:
C(qo,q) = F +coqo +c-q
e Demand for cell phone service:

Demand p; (q), Total Revenue R(q) = p




A Peak-Load Pricing Problem

e The monopolist profit maximization problem:

e How do you solve this problem?

e When does FOC guarantee a solution?

e \What does the Lagrange multiplier mean?
e What should you do when FOC “fails”?




Need.
Lagrange Multiplier Method

1. Write Constraints as h(X)=0,1 =1,...,m
(%) = (R (X), .. N, (X))
2. Shadow prices A =(A,,...,1.)

o Lagrangian £(x,A) = f (x)+A Th(x)
o FOC:

9L _ T ™ <0, with equality if X >0

6xj 6xj axj

372 =h (X) =0, with equality if A >0.




Solving Peak-Load Pricing

e The monopolist profit maximization problem:

e The Lagrangian is
£(0p, @) = R(AQ) ~F ~ 0= > ¢,q; + 2 A (6,1 )
j=1 j=1

= R(q) - Z(c +A,)q; + (ZA _Co]CIo_F




Solving Peak-Load Pricing

o FOC:
0L
> — =MR -c¢, =4, <0, withequdity if g, >0.
9;
0L I

=> A —¢, <0, with equdlity if g, > 0.
]=1

aq,

oe
oA

=q, —q; 20, with equality if A, >0,




Solving Peak-Load Pricing

For positive production, FOC becomes:

0L _ P
—=MR -c, -4, =0, sinceq; >0.

0q;

0L I .
—=> A -¢, =0, sinceq, >0.
9, ‘=

e

67_qO—qj >0, with equality If A, >0.
j




Solving Peak-Load Pricing

e Meaning of FOC:

6_2: MR —-c.—A =0, sinceq, >0.
aqj S T J
At least 1
0L B . period has
aq, _Z_;Aj ~& =0, sncedy > 0. | oo dow
0 )7 price > 0!
0L _

67_qO—qj >0, with equality If A, >0.
j




Solving Peak-Load Pricing

e Meaning of FOC:

0L —I\/IR -c _/] -0 Hit capacity
0q. '|at positive
J shadow price!

0L _ N\

— Z/]j — ¢, =0, | Off-peak shadow price = 0

00, 9=

0L _
01

0, —q; 20, withequality if A, >0.




Solving Peak-Load Pricing

e Meaning of FOC: |Peak MR=MC+capacity cost

9% _ MR -c. -4 =0, MR(Q@)=¢ +4

0g j

0L _<\y _ — 0| Peak periods share capacity
Y A -c, =0 _ _
09, ‘= cost via shadow price

ofpeak: iR (g) = ¢, kquality if A, >0.

13




Solving Peak-Load Pricing

e Economic Insight of FOC:
e Marginal decision of the manager. MR=MC
e Off-peak: MR=operating MC
Since didn’t hit capacity
e Peak: Need to increase capacity

MR of all peak periods = cost of additional capacity
+ operating MC of all peak periods

e What's the theory behind this?
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Constrained Optimization:
Economic Intuition

e Single Constraint Problem:
Max{ f (x) | x=0,b-g(x) = 0}
e Interpretation: a profit maximizing firm

Produce non-negative output X=0
Subject to resource constraint g(X)<b

n
e Example: linear constraint alX = Zaj X < b
j=1

Each unit of x; requiresa; units of resource b.
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Constrained Optimization:
Economic Intuition

e Single Constraint Problem:
Max{ f (x) | x=0,b-g(x) = 0}
e Interpretation: a utility maximizing consumer

o Consume non-negative input X=0
* Subject to budget constraint  9(X) <D

n
e Example: linear constraint alX = Zaj X < b
j=1

Each unit of x; requiresa; unitsof currency b.
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Constrained Optimization:
Economic Intuition

e Suppose X solves the problem

of
e Ifincreases X;, profit changes by v
) og
e Additional resources needed: 67
j

e Cost of additional resources: ) a_g
(Market (or shadow) price is A) an

Net gain to increasing x; is ﬂ(X)—/] a—g(i)

axj axj
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Necessary Conditions for X,

o If X is strictly positive, marginal net gain =0
cie g >0= % (x)-129 (%) =0

ox, ox,
e If X; Iis zero, marginal net gain <0
_ of 0g
e =0=>—(X)-1—=(X)<0
J ax_ ( ) ax_ ( )

J J

9 ()= 2129 (%) < 0 with equality if X, > 0.

ax axj




Necessary Conditions for Xj

e If resources doesn’t bind, opportunity cost A =0
°ie ph-g(X)>0=A=0

e Or, In other words,

b-g(X) = 0 with equality if A >0.

o This is logically equivalent to the first statement.
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Lagrange Multiplier Method

1. Write constraint as h(x) =0

2. Lagrange multiplier = shadow price A
e Lagrangian £(x,A)=f (x)+A(x)
o FOC:

9L _ ot PN <0, with equality if X
axj axj 0X.

> 0.

J
oL _

- h(i) >0, with equality if A >0.




Example 1

e A consumer problem:
Max{ f (x) =Inxx, | x=0,h(x) =2-x —x, = 0}

A
X5

X = (11)

f(x) = f(x°)
h(X) =

>

X




Example 1

e Maximum at X =(11)
e Lagrangian £(X,A) =Inx +Inx, +A(2-X —X,)
o FOC

9% _ i+/]<O with equdity If X; > 0.

ax X,

0L

a —=2-%—X%, 20, withequality if A >0.




Lagrange Multiplier Method
with Multiple Constraints

1. Write Constraints as h(X)=0,1 =1,...,m
(%) = (R (X), .. N, (X))
2. Shadow prices A =(A,,...,1.)

o Lagrangian £(x,A) = f (x)+A Th(x)
o FOC:

9L _ T ™ <0, with equality if X >0

6xj 6xj axj

372 =h (X) =0, with equality if A >0.




When Intuition Breaks Down?
Example 2

e A “new” problem:
Max{ f(x)=Inxx, |x20,h(x) = (2-% -x,) 20

f(x) = f(x°)

> 24
X,




When Intuition Breaks Down?
Example 2

Lagrangian £(x,A) =Inx, +Inx, + A(2-x, —x,)°

FOC is violated!

95 -1 3(2-x-x) =1ax=(L])

axj X,

How could this be?

Because “linearization” falls if gradient = 0...

a—h:OatX:(],l)
0X

h(X) = h(X) +g—2(x> Ix-%) =h(L,1) =0




Other Breaks Down?

Example 3

I\/Ixax{ f(X) =12% + X%, | x20,h(x) =(2-%) =X, 20}

T(x)=1(X)

X = (2,0)




Other Breaks Down?
Example 3

e Lagrangian £(X,A) =12x +x, + 4 [(2— X)) - xz]

e FOC is violated!

9% _12-31(2-%)? =12 & X = (2,0)

0x,
e What's the problem this time?
e Not the gradient... oh ,_
&(X) =(0,-1)

e “Linearized feasible set” has no interior...




Other Breaks Down?
Example 3

e What's the problem this time?
e Gradientis G_(X) = (0,-1)
OX
e Hence, the linear approximation of the
constraint Is:

oh - _._oh . oh _
&(X) [(Xx—X) —a(x) {x —2)+ ox, (X) X,

=-X20=>x,=0




Other Breaks Down?
Example 3

I\/Ixax{ f(X) =12% + X%, | x20,h(x) =(2-%) =X, 20}

A
X2

T(x)=1(X)

Linearized feasible set




Linearized Feasible Set X

e Set of constraints binding at X: h(X) =0
o For iOB={il|i=1...mh(X) =0}
e Replace binding constraints by linear approx.
_ ~ oh B
109 =h )+ 5L (%) Tx-%) 20
e Since these constraints also bind, we have
m(X)Eﬂx—X)ZO, 1B
0X

» Because h(X)=0
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Linearized Feasible Set X

e Note: These are “true” constraints if gradient
oh ,_
o (X)#0
0X

e X = Linearized Feasible Set
= Set of non-negative vectors satisfying

%(X) [(x—X)=0, 1B
0X

31




Constraint Qualifications

(i1

Set of feasible vectors:
X ={x|x=0,h(x) =0}

The Constraint Qualifications hold at X LI X if
Binding constraints have non-zero gradients

oh _
ax(x);to

The linearized feasible set X at X has a
non-empty interior.
e CQ guarantees FOC to be necessary conditions

2




Proposition 1.2-1
Kuhn-Tucker Conditions (FOC)

e Suppose X solves miax{ f(x)[xOX}, X =feasik
e |f the constraint qualifications hold at X

e Then there exists shadow price vectorA =0
e Suchthat (forj =1,...,n,1=1..m)

g—g(m) <0, with equality if X, >0,
X.

J

og
oA

(X,A) =0, with equality if A >0.




Lemma 1.2-2
ISpecial Case] Quasi-Concave

e If for each binding constraint at X, h is quasi-
concave and m(i)iO

e Then, X [ X
o Tangent Hyperplanes = Supporting Hyperplanes!

e Hence, if X has a non-empty interior, then so
does the linearized set X

e Thus we have...
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Proposition 1.2-3 [Quasi-Concave]
Constraint Qualifications

e Suppose feasible set has non-empty interior
X ={x|x=0,h(x) =0}

e The Constraint Qualifications hold at X LI X if
e Binding constraints h IS quasi-concave, and

on _
aX(x);tO
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Proposition 1.2-4
Sufficient Conditions

e X solves
max{ f (x)|x20,h(x)20,i =1,...,m}

e Iffandh,i=1...,m are quasi-concave,
e The Kuhn-Tucker conditions hold at X,

e Binding constraints have g—h(i) %0
X
e And ﬂ(x) % 0.
0X




Summary of 1.2

e Consumer = Producer
e Lagrange multiplier = Shadow prices
e FOC =*"MR — MB = 0": Kuhn-Tucker

e When does this intuition fail?
Gradient=0
Linearized feasible set has no interior

- Constraint Qualification: when it flies...
CQ for guasi-concave constraints

e Sufficient Conditions (Proof in Section 1.4)
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Summary of 1.5

e Peak-Load Pricing requires Kuhn-Tucker

e MR="effective” MC

e Off-peak shadow price (for capacity) =0

e All peak periods share additional capacity cost

e Can you think of situations (after you start
your new job making $$$3$) that requires
something similar to peak-load pricing?

e Homework: J/R: A2.25, A2.28, A2.32-34

o Riley: 1.2-1, 1.2-3, 1.5-1~3
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