Aversion to Risk

Joseph Tao-yi Wang 2009/12/25

(Lecture 16, Micro Theory I)

Dealing with Uncertainty

- Preferences over risky choices (Section 7.1)
- One simple model: Expected Utility

$$U(c_1, c_2) = \pi_1 v(c_1) + \pi_2 v(c_2)$$

- How can old tools be applied to analyze this?
- How is "risk aversion" measured?
- What about differences in risk aversion?
- How does a risk averse person trade state claims? (Wealth effects? Individual diff.?)

- Two states: s=1: KMT wins; s=2: DPP wins
- π_s : Prob. of state s c_s : consumption in state s

$$U(c_1, c_2) = \pi_1 v(c_1) + \pi_2 v(c_2)$$

$$\overline{(\overline{c}, \overline{c})} \qquad \text{slope} = -\frac{\pi_1}{\pi_2}$$

$$U(c_1, c_2) = \pi_1 v(c_1) + \pi_2 v(c_2)$$

$$\overline{(\overline{c}, \overline{c})} \qquad \text{slope} = -\frac{\pi_1}{\pi_2}$$

$$U(c) = v(\overline{c})$$

3

• Upper contour sets of U(.) is convex

$$U(c_1, c_2) = \pi_1 v(c_1) + (1 - \pi_1) v(c_2) \le v(\overline{c})$$

Prefers certain bundle to risky ones with same EV

4

Risk Aversion: Concave
$$v(c)$$

$$c_2 > c_1 \Rightarrow v'(c_1) > v'(c_2)$$

$$c_2 > c_1 \Rightarrow v'(c_1) > v'(c_2)$$

$$MRS(c_1, c_2) = \frac{dc_2}{dc_1} \Big|_{U = \overline{U}} = \frac{\frac{\partial U}{\partial c_1}}{\frac{\partial U}{\partial c_2}} = \frac{\pi_1 v'(c_1)}{\pi_2 v'(c_2)}$$

Extremely Risk Loving: Convex v(c)

• Upper contour sets of U(.) is convex

$$U(c_1, c_2) = \pi_1 v(c_1) + (1 - \pi_1) v(c_2) \ge v(\overline{c})$$

Prefers most risky bundles (weird!)

6

Jensen's Inequality

• For any probability vector π and consumption vector c, if v(c) is concave, then

$$\sum_{s=1}^{S} \pi_s v(c_s) \le v(\overline{c}) \text{ where } \overline{c} = \sum_{s=1}^{S} \pi_s c_s$$

- Proof:
- Easy if v(c) is continuously differentiable, since

Concavity implies
$$v(c_s) \leq v(\overline{c}) + v'(\overline{c})(c_s - \overline{c})$$

$$\sum_{s=1}^{S} \pi_s v(c_s) \le v(\overline{c}) + v'(\overline{c}) \cdot \left(0 \right)$$
QED

Measure Risk Aversion

- Let: $M = MRS(c_1, c_2) = \frac{dc_2}{dc_1}\Big|_{U = \overline{U}} = \frac{\pi_1 v'(c_1)}{\pi_2 v'(c_2)}$
- Then:

$$\ln M = \ln v'(c_1) - \ln v'(c_2) + \ln \left(\frac{\pi_1}{\pi_2}\right)$$

- Thus, $\frac{1}{M} \frac{dM}{dc_1} = \frac{\partial}{\partial c_1} \ln M + \frac{\partial}{\partial c_2} \ln M \frac{dc_2}{dc_1} \Big|_{U = \overline{U}}$

$$= \frac{v''(c_1)}{v'(c_1)} - \frac{v''(c_2)}{v'(c_2)} \cdot \left(-\frac{\pi_1}{\pi_2}\right)$$

Measuring Risk Aversion

• At
$$(\overline{c}, \overline{c})$$
, $\frac{1}{M} \frac{dM}{dc_1} = \frac{v''(\overline{c})}{v'(\overline{c})} \cdot \left(1 + \frac{\pi_1}{\pi_2}\right)$

Bev's indifference curve bend more rapid if

- Absolute Risk Aversion $A(c) = -\frac{v''(c)}{v'(\overline{c})}$
- Relative Risk Aversion $R(c) = -\frac{cv''(\overline{c})}{v'(\overline{c})}$
- Indifference curve bend more rapid if A(c) high
- Can also obtain:
- A(c) higher \rightarrow acceptable gambles set smaller
 - But need to first establish the relationship between two people's (risk averse) utility functions...

Proposition 7.2-1: Differences in Risk Aversion

- Two (von Neumann-Morgenstern) expected utility functions: v_A, v_B
- Then $A_B(c) = -\frac{v_B''(c)}{v_B'(c)} \ge -\frac{v_A''(c)}{v_A'(c)} = A_A(c)$
- iff the mapping $f(\cdot): v_A \to v_B$ is concave.
- Proof:
- First, note that the mapping is monotonic since v_A, v_B are increasing, or f'(c) > 0

Proposition 7.2-1: Differences in Risk Aversion

- Proof: (Continued)
- $v_B(c) = f(v_A(c))$ implies $v_B'(c) = f'(v_A)v_A'(c)$
- Hence,

$$\frac{\partial}{\partial c} \ln \left[v_B'(c) \right] = -\frac{v_B''(c)}{v_B'(c)} = -\frac{f''(c)}{f'(c)} v_A'(c) - \frac{v_A''(c)}{v_A'(c)}$$

- Since $f'(c), v'_A(c) > 0$
- $\text{--W}_B'(c) \geq -\frac{v_A''(c)}{v_A'(c)} \quad \text{iff} \ \ f''(v_A) \leq 0$

Proposition 7.2-2:Risk Aversion & the Set of Acceptable Gambles

• If
$$A_B(c) = -\frac{v_B''(c)}{v_B'(c)} \ge -\frac{v_A''(c)}{v_A'(c)} = A_A(c)$$

- ullet and both start with the same wealth \overline{c} . Then,
- The set of acceptable gambles to *B* is a subset of the set of gambles acceptable to *A*.
- Proof:

Homework (J/R 2.33)

- y_s : Endowment in state s, $y_1 > y_2$
- p_s : current price of unit consumption in state s

• Budget Constraint: $p_1c_1 + p_2c_2 = p_1y_1 + p_2y_2$

Wealth↑, how would riskiness of optimal choice change?

• Move from (c_1, c_2) to $(c_1 + x, c_2 + x)$ $\ln M = \ln v'(c_1 + x) - \ln v'(c_2 + x) + \ln \left(\frac{\pi_1}{\pi_2}\right)$

Wealth ↑, how would riskiness of optimal choice change?

- In words, with CARA,
- Wealth ↑ implies parallel shift; MRS same!
 - Optimal choice is as risky as original choice

- With DARA,
- Wealth ↑: Point lower than CARA; MRS ↑
 - Optimal choice is more risky than original choice
- Similar for IARA...

Simple Portfolio Choice: Riskless vs. Risky

- Alex can invest in either:
 - Riskless asset: $1 + r_1$
 - Risky asset: $1+ ilde{r}_2$

• If Alex is risk averse, how high would the "risk premium" $(r_1 + \tilde{r}_2)$ need to be for Alex to invest in the risky asset?

Zero! (But risk premium affect proportions)

Simple Portfolio Choice: Riskless vs. Risky

- Using state claim formulation:
 - Risky asset yields $1 + \tilde{r}_{2s}$ in state s
 - Probability of state s is $\pi_s, \ s=1,\cdots,S$
- Invests x in risky asset,(W x) in riskless one
- Final consumption in state s is

$$c_s = W(1+r_1) + x\theta_s \quad (\theta_s = r_{2s} - r_1)$$

Alex's utility:

$$U(x) = \sum_{s=1}^{S} \pi_s v (W(1+r_1) + x\theta_s)$$

Simple Portfolio Choice: Riskless vs. Risky

Marginal Gains from increasing x

$$U'(x) = \sum_{s=1}^{S} \pi_s v' \left(W(1+r_1) + x\theta_s \right) \cdot \theta_s$$

So, there is a single turning point since

$$U''(x) = \sum_{s=1}^{3} \pi_s v'' (W(1+r_1) + x\theta_s) \cdot \theta_s^2 < 0$$

• Should choose x so that U'(0) = 0

Simple Portfolio Choice: Riskless vs. Risky

Since (unless infinitely risk averse)

$$U'(0) = v'(W(1+r_1)) \sum_{s=1}^{S} \pi_s \theta_s > 0 \Leftrightarrow \sum_{s=1}^{S} \pi_s \theta_s > 0$$

- Alex will always buy some risky asset!
- Intuition:
- When taking no risk, each MU weighted with the same $v'(W(1+r_1))$, as if risk neutral!
- Not true for any x > 0
 - Depends on degree of risk aversion...

Would a more risk averse person invest less risky?

- Yes!
 - Choose smaller x if everywhere more risk averse
- Proof:
- Consider Bev: $v_B(c) = f(v_A(c)), f$ concave
- If Alex's optimal choice and consumption be

$$x^*$$
 and $c_s^* = W(1 + r_1) + \theta_s x^*$

• Then,
$$U_A'(x^*) = \sum_{s=1}^S \pi_s v'(c_s^*) \cdot \theta_s = 0$$

Would a more risk averse person invest less risky?

- Claim: $U'_B(x^*) < 0$ (And we are done!)
- Proof:
- Order states so $\theta_1 \geq \theta_2 \geq \cdots \geq \theta_S$
- Let t be the largest state that $\theta_s = r_{2s} r_1 > 0$
- Then, $v_A(c_s^*) \ge v_A(c_t^*)$ for all $s \le t$ $v_A(c_s^*) < v_A(c_t^*)$ for all s > t
- And, (by concavity of f)

$$f'(v_A(c_s^*)) \ge f'(v_A(c_t^*)), s \le t$$

 $f'(v_A(c_s^*)) < f'(v_A(c_t^*)), s > t$

Would a more risk averse person invest less risky?

• Hence, S $U_B'(x^*) = \sum_{s=1}^S \pi_s f'\big(v_A(c_s^*)\big) v_A'(c_s^*) \cdot \theta_s$

$$<\sum_{t=1}^{s} \pi_s f'(v_A(c_t^*)) v'_A(c_s^*) \cdot \theta_s$$

$$-\sum_{s=t+1}^{S} \pi_s f'(v_A(c_t^*)) v'_A(c_s^*) \cdot (-\theta_s)$$

$$= f'(v_A(c_t^*)) \sum \pi_s v'_A(c_s^*) \cdot \theta_s = f'(v_A(c_t^*)) U'_A(c^*) = 0$$

Summary of 7.2

- Von Neumann Morganstern Utility Function
- Jensen's Inequality
- Absolute or Relative Risk Aversion
- Bev is more risk verse than Alex implies:
 - Mapping from v_A to v_B is concave
 - Bev will not accept gambles that Alex rejects
- State Claim Market
 - Wealth effect; Risk averse people invest less risky
- Homework: Riley-7.2-2, 5-8; J/R-2.25, 2.33-35