Theory of Risky Choice

Joseph Tao-yi Wang 2009/12/18

(Lecture 15, Micro Theory I)

Theory of Risky Choice

- We analyzed preferences, utility and choices
- Apply them to study risk and uncertainty
- Preference for probabilities
- Expected Utility
- Discuss Experimental Anomalies
- Allais paradox and Ellsberg paradox
- Bayes' Rule paradoxes: Soft vs. Hard probability, Game show paradox (Monty Hall problem)
- Rabin paradox

States and Probabilities

- Consequence c_{s} happens in state $s=1, \cdots, S$
- Assign (subjective) probability π_{s} to state s
- A prospect $\left.(\pi ; c)=\left(\left(\pi_{1}, \cdots, \pi_{S}\right) ;\left(c_{1}, \cdots, c_{S}\right)\right)\right)$
- People have preferences for these prospects
- Under the Axioms of Consumer Choice, exists continuous $U(\pi ; c)$ representing these pref.
- If we fix consequences; focus on probabilities

$$
U(\pi ; c)=U(\pi)=U\left(\pi_{1}, \pi_{2}, \pi_{3}\right)
$$

States and Probabilities

- Assume $c_{1} \succ c_{2} \succ c_{3}$, show all possible probabilities on 2D: $\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$

Compound Prospect (Compound Lottery)

- If I offer you $\pi^{1}=\left(\pi_{1}^{1}, \pi_{2}^{1}, \pi_{3}^{1}\right)$ with prob. p_{1}, and
- $\pi^{2}=\left(\pi_{1}^{2}, \pi_{2}^{2}, \pi_{3}^{2}\right)$ with probability $p_{2}=1-p_{1}$ $\pi_{3} \uparrow$ Compound Prospect:

Linear Indifference Curves

- If you are indifferent between π^{1} and π^{2}
- How would you feel about randomizing them?

When Would Indifference Curves Become Parallel?

- For $q^{1}=\left(1-\lambda, \lambda: \pi^{1}, r\right), q^{2}=\left(1-\lambda, \lambda: \pi^{2}, r\right)$
- Then,

$$
\begin{aligned}
\pi^{1} \sim \pi^{2} & \Rightarrow q^{1} \sim q^{2} \\
& \pi^{1} \succsim \pi^{2} \Rightarrow q^{1} \succsim q^{2}
\end{aligned}
$$

Parallel Indifference Curves

Independence Axioms)

- (IA) If $\pi^{1} \succsim \pi^{2}$, then for any prospect r and probabilities $p_{1}, p_{2}>0, p_{1}+p_{2}=1$

$$
q^{1}=\left(p_{1}, p_{2}: \pi^{1}, r\right) \succsim\left(p_{1}, p_{2}: \pi^{2}, r\right)=q^{2}
$$

- (IA') If $\pi^{m} \succsim \hat{\pi}^{m}, m=1, \cdots, M$, then for any probability vector $p=\left(p_{1}, \cdots, p_{M}\right)$

$$
\left(p_{1}, \cdots, p_{M}: \pi^{1}, \cdots, \pi^{M}\right)
$$

$$
\succsim\left(p_{1}, \cdots, p_{M}: \hat{\pi}^{1}, \cdots, \hat{\pi}^{M}\right)
$$

Expected Utility

- For any prospect π, consider (on $\pi_{1}+\pi_{3}=1$):
- Extreme lottery $(v(\pi), 0,1-v(\pi)) \sim \pi$

$$
\begin{aligned}
& \pi_{3} \uparrow c_{3} \text { Can use } v(\pi) \text { to represent pref.!! } \\
& v\left(c_{3}\right)=0
\end{aligned}
$$

Expected Utility

- In general, for any prospect $p=\left(p_{1}, \cdots, p_{S}\right)$
- The consumer is indifferent between p and playing the extreme lottery

$$
\sum_{s=1}^{S} p_{s} v\left(c_{s}\right) 0, \cdots, 0,1-\sum_{s=1}^{S} p_{s} v\left(c_{s}\right)
$$

- Hence, we can represent her preferences with the above expected win probabilities
- Expected Utility!!

Expected Utility Rule

- Assume (IA'), then
- Preferences over prospects

$$
(p ; c)=\left(p_{1}, \cdots, p_{S} ; c_{1}, \cdots, c_{S}\right)
$$

- Can be represented by the Von NeumannMorgenstern utility function

$$
u(p, c)=\sum_{s=1}^{S} p_{s} v\left(c_{s}\right)
$$

- Proof:

Expected Utility Rule

- Proof: S consequences, best is c^{*}, worse is c_{*}
- Can assign probability for extreme lotteries:

$$
e^{s} \equiv\left(v\left(c_{s}\right), 1-v\left(c_{s}\right): c^{*}, c_{*}\right) \sim c_{s}
$$

- (IA') implies $(p ; c) \sim\left(p_{1}, \cdots, p_{S}: e_{1}, \cdots, e_{S}\right)$

$$
\begin{aligned}
& \quad \sim\left(u(p, c), 1-u(p, c): c^{*}, c_{*}\right) \\
& \text { where } u(p, c)=\sum_{s=1}^{S} p_{s} v\left(c_{s}\right)
\end{aligned}
$$

- (by reducing compound prospects)

Experimental Anomalies

- Allais Paradox
- Ellsberg Paradox
- Bayes' Rule Paradoxes
- Soft vs. Hard Probabilities
- Game Show Paradox
- Rabin Paradox

Allais Paradox

- Consider four prospects:
A. $\$ 1$ million for sure
B. 90% chance $\$ 5$ million (\& 10% chance zero)
c. 10% chance $\$ 1$ million ($\& 90 \%$ chance zero)
D. 9% chance $\$ 5$ million (\& 91% chance zero)
- Among A and B, you choose...
- Among C and D, you choose...
- Is this consistent with Expected Utility???

Allais Paradox

- state 1: \$5 million; state 2: \$1 million; state 3: zero
- The four prospects become:
A. $\$ 1$ million for sure $\quad-(0,1,0)$
B. 90% chance $\$ 5$ million $-(0.90,0,0.10)$
c. 10% chance $\$ 1$ million $-(0,0.10,0.90)$
D. 9% chance $\$ 5$ million $-(0.09,0,0.91)$
- (IA) suggests you should order "A and B" the same as "C and D". Did you?

Allais Paradox * 1,000

A. $\$ 1$ billion for sure
B. 90% chance $\$ 5$ billion ($\& 10 \%$ chance zero)
c. 10% chance $\$ 1$ billion ($\& 90 \%$ chance zero)
D. 9% chance $\$ 5$ billion ($\& 91 \%$ chance zero)

- Among A and B, you choose...
- Among C and D, you choose...
- Are your answers (still) consistent with Expected Utility? Why or why not?

Ellsberg Paradox

- One urn: 30 Black balls, and 60 "other balls"
- Other balls could be either Red or Green

1. One ball is drawn. You win $\$ 100$ if the ball is (a) Black or (b) Green. You pick...?
2. Now you win $\$ 50$ if the ball is "either Red or another color you choose." Would you choose (a) Black or (b) Green?

- What did you choose? Did it violate EU?

Ellsberg Paradox

One ball is drawn. You win $\$ 100$ if the ball is (a) Black or (b) Green.

- Picking Black = Believe <30 Green balls

2. Now you win if "either Red or another color." You choose (a) Black or (b) Green?

- Picking Green = Believe >30 Green balls
- Since it is the same urn, this is inconsistent!
- Can this be due to hedging (risk aversion)?
- Maybe, but can fix this by paying only 1 round...

Bayes' Rule Paradoxes: Soft vs. Hard Probabilities

- Two urns, each contain 100 balls.

1. Urn 1 has 60 Yellow balls.
2. Urn 2 has 75 or 25 Yellow balls with equal chance.

- You win a prize if you draw a Yellow ball.
- A ball is drawn from Urn 2 and it is Yellow.
- Which Urn should you choose?
- Did you do Bayesian updating correctly?

Bayes' Rule Paradoxes: Soft vs. Hard Probabilities

- Prior to draw, $\operatorname{Pr}($ draw a $Y)=0.5$. After:
- $\operatorname{Pr}(Y \mid 75-Y)=0.75, \operatorname{Pr}(Y \mid 25-Y)=0.25$.
- $\operatorname{Pr}(75-Y \mid Y)=0.5 * 0.75 / 0.5=0.75$
- $\operatorname{Pr}(25-Y \mid Y)=1-0.75=0.25$
- $\operatorname{Pr}($ draw another $Y \mid Y)=$

$$
\begin{aligned}
& \operatorname{Pr}(75-Y \mid Y) * \operatorname{Pr}(Y \mid 75-Y)+ \\
& \quad \operatorname{Pr}(25-Y \mid Y) * \operatorname{Pr}(Y \mid 75-Y) \\
&= 0.75 * 0.75+0.25 * 0.25=0.625>0.6
\end{aligned}
$$

- So you should pick Urn 2!! (Did you do that?»

Bayes' Rule Paradoxes: Gam? Show Paradox

One door hides the prize (a car). Remaining two doors hides a goat (non-prize).

Suppose you choose door number 1...

Game Show Paradox (Monty Hall Problem)

Door 3 is opened for you...
Obviously the car is not behind door 3... Would you want to switch to door 2?

Depends on how door is opened...

- Rule to open one door:

The Host must open one "other" door without the prize. If he has a choice between more than one door, he will randomly open one of the possible (goat) doors.

- The Game Show Paradox is also known as the Monty Hall Problem, named after the name of the TV show host "Monty Hall"

Game Show Paradox Plus: The (Generalized) Monty Hall Problem

One door hides the prize (a car).
Remaining two doors hides a goat (non-prize).
Door 3 is transparent (and you see the goat)
Suppose you choose door number 1...

Game Show Paradox Plus: The (Generalized) Monty Hall Problem

Door 3 is opened for you...
Obviously the car is not behind door 3 (and you knew that already)... Would you want to switch to door 2?

If You Picked the Right Door

 (50\%)

Host randomizes between door 2 and 3 (50-50) If host opens door 2... (Prob.=50\%*50\%)

You should definitely not switch!

If You Picked the Right Door (50\%)

Host randomizes between door 2 and 3 If host opens door 3... (Prob=50\%*50\%) You should still not switch (but you don't know)

If You Picked the Wrong Door (50\%)

Host cannot open door 2 (contains car)
See host opening door 3... (Prob.=50\%*100\%)
You should switch (but you don't know)

Bayesian Solution (GMHP)

Door \#3 is transparent...

Rabin Paradox: Which Cells Will You Accept?

Payoff if Green Ball	Number of Green Balls (out of 100)				Payoff if Red Ball	
100	52	55	60	66	70	-100
1000	13	20	33	46	57	-100
5000	7	18	33	46	57	-100
25000	7	18	33	46	57	-100

Summary of 7.1

- Preferences over prospects
- Indifference Curves
- Linear: "Reduction of Compound Lotteries"

Parallel: "Independent of Irrelevant Alternatives"

- Expected Utility
- Anomalies: Allais paradox, Ellsberg paradox, Bayes' Rule paradoxes (Soft vs. Hard prob. and Monty Hall Problem) and Rabin paradox
- Homework: Riley - Exercise 7.1-2~4

