Equilibrium Futures Prices

Joseph Tao-yi Wang 2009/12/11

(Lecture 14, Micro Theory I)

What We Learned about Equilibrium?

- Pareto Efficient Allocation (PEA) Optimum
 - Cannot make one better off without hurting others
- Walrasian Equilibrium (WE) Price Vector
 - When Supply Meets Demand
 - Even if there is only one person Robinson Crusoe
- 1st Welfare Theorem: WE are PEA
 - Schizophrenic Robinson Crusoe achieves optimum
- 2nd Welfare Theorem: PEA supported as WE
- Also works under inter-temporal choices...

Walrasian Equilibrium

- **Price-taking**: Prices p > 0
- Firm *f* chooses production plan $y^f(p)$ so it solves $\max_{y} \left\{ p \cdot y^f | y^f \in \gamma^f \right\}, f = 1, \cdots, F$
- Consumer *h* has θ^{hf} ownership shares in firm *f* and earns dividends equal to $\Pi^f(p) = p \cdot y^f(p)$
- Consumer *h* chooses consumption $x^h(p)$ so it solves

$$\max_{x} \left\{ U^{h}(x^{h}) \left| p \cdot x^{h} \le p \cdot \omega^{h} + \sum_{f=1}^{F} \theta^{hf} \Pi^{f} \right\} \right\}$$

Reinterpreting the General Model as Spot & Futures

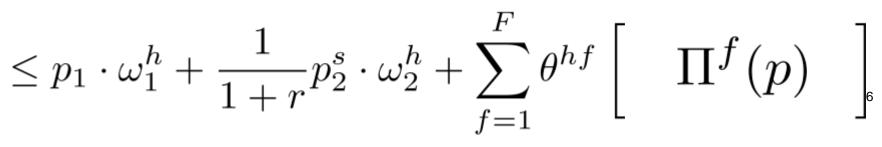
- **2 Periods**: *t*=1, 2
- Firm's Production Plans $y^f = (y_1^f, y_2^f)$
 - Each period: $y_t^f = (y_{t1}^f, \cdots, y_{tn}^f), t = 1, 2$
- Consumer's Consumption Vectors: $x^h = (x_1^h, x_2^h)$
- Price vector: $p = (p_1, p_2)$
- All trade is done in Period 1:
- Spot price vector: $p_1 = (p_{11}, \cdots, p_{1n})$
- Futures price vector: $p_2 = (p_{21}, \cdots, p_{2n})$

Reinterpreting Spot & Futures as Borrowing & Lending

- Market interest rate: r; Period 2 Spot price: p_2^s
- Firm's Dividends and Borrowing:
- Period 1: $d_1^f = p_1 \cdot y_1^f + B_1^f$
- Period 2: $d_2^f = p_2^s \cdot y_2^f B_1^f (1+r)$
- PV is $d_1^f + \frac{d_2^f}{1+r} = p_1 \cdot y_1^f + \frac{1}{1+r} p_2^s \cdot y_2^f$
- Relationship with Futures: $p_2^s = (1+r)p_2$ $p_1 \cdot y_1^f + p_2 \cdot y_2^f = \Pi^f(p)$

Reinterpreting Spot & Futures as Borrowing & Lending

- Consumer's Budget Constraint and Saving:
- Period 1: $p_1 \cdot x_1^h \le p_1 \cdot \omega_1^h + \sum_{f=1}^h \theta^{hf} d_1^f S_1^h$
- Period 2: $p_2^s \cdot x_2^h \le p_2^s \cdot \omega_2^h + \sum_{f=1}^F \theta^{hf} d_2^f + (1+r)S_1^h$
- PV is $p_1 \cdot x_1^h + \frac{1}{1+r} p_2^s \cdot x_2^h$ f=1



Rational Expectations

- For this to work, we need:
- 1. Rational Expectations: Agents correctly forecast equilibrium future spot prices
 - May not be true, but okay if arbitrageurs fix it...
- 2. No Bankruptcy: Consumers have to live up to their promises for lenders to lend to them
- 3. No Uncertainty (about future preferences and technology): Can be extended in Ch. 7.

Example

- Two goods, two periods: $x_t = (x_{t1}, x_{t2})$
- All consumers have same log preferences
- $U = u(x_1) + \frac{1}{2}u(x_2)$ where $u(x_t) = 2\ln x_{t1} + \ln x_{t2}$
- Endowments: $\omega_1 = (120, 120), \quad \omega_2 = (0, 0)$
- Technology: Investment z_{1i} to earn q_{2i} later...

$$q_{21} = 2z_{11}, \quad q_{22} = 4z_{12}$$

• Solve for optimal consumption, Walrasian Equilibrium spot and future prices (and $p_2^{s}\,$)

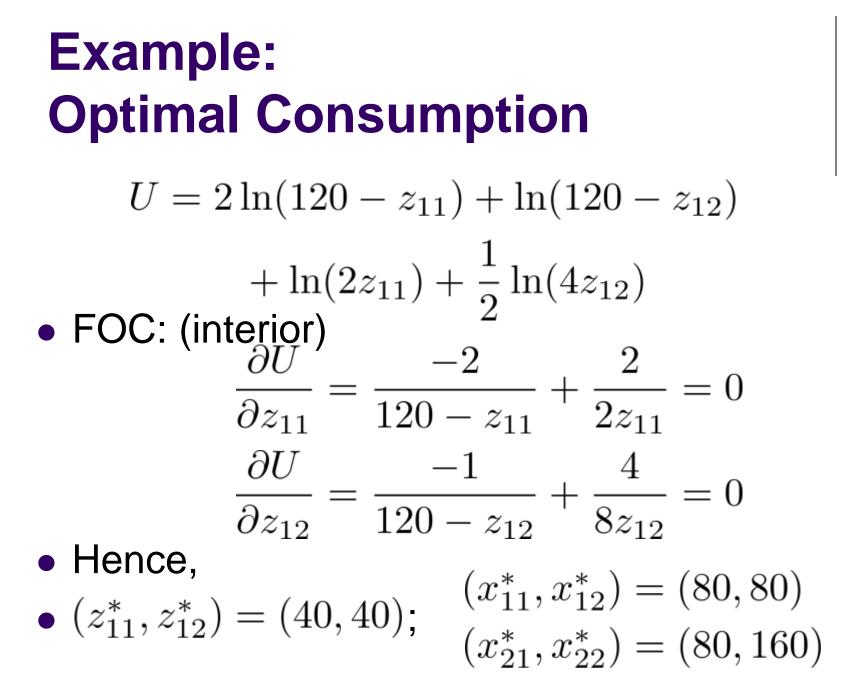
Example: Optimal Consumption

- $U = \left[2\ln x_{11} + \ln x_{12}\right] + \frac{1}{2}\left[2\ln x_{21} + \ln x_{22}\right]$
- Can use Representative Agent
 - Since preferences are homothetic and identical

• Note
$$x_{11} = \omega_{11} - z_{11}, x_{12} = \omega_{12} - z_{12}, x_{21} = 2z_{11}, x_{22} = 4z_{12}$$

RA solves

$$U = 2\ln(120 - z_{11}) + \ln(120 - z_{12}) + \ln(2z_{11}) + \frac{1}{2}\ln(4z_{12})$$



Example: Walrasian Equilibrium

11

- 2nd Welfare Theorem applies
 - Since technology and preferred sets convex
- Prices for delivery in period 1: $p_1 = (p_{11}, p_{12})$
 - Futures prices for delivery in period 2: $p_2 = (p_{21}, p_{22})$
- Given consumer wealth *W*, choose *x* to solve $\max_{x} \left\{ U(x) | p \cdot x = p_1 \cdot x_1 + p_2 \cdot x_2 = W \right\}$

FOC:
$$\frac{\partial U}{\partial x_{11}} = \frac{\partial U}{\partial x_{12}} = \frac{\partial U}{\partial x_{21}} = \frac{\partial U}{\partial x_{21}} = \frac{\partial U}{\partial x_{22}} = \lambda$$

 $p_{11} = p_{12} = p_{21} = p_{22} = \lambda$

Example: Walrasian Equilibrium $U = \left[2\ln x_{11} + \ln x_{12}\right] + \frac{1}{2}\left[2\ln x_{21} + \ln x_{22}\right]$ • Thus, at $(x_{11}^*, x_{12}^*) = (80, 80) (x_{21}^*, x_{22}^*) = (80, 160)$ $\frac{2}{p_{11}80} = \frac{1}{p_{12}80} = \frac{1}{p_{21}80} = \frac{\frac{1}{2}}{p_{22}160} = \lambda$

- Set numeraire $p_{11} = 1$,
- Spot prices $p_1 = (p_{11}, p_{12}) = (1, \frac{1}{2})$
- Future prices $p_2 = (p_{21}, p_{22}) = (\frac{1}{2}, \frac{1}{8})$

Example: Walrasian Equilibrium

- Set numeraire for all periods: $p_{11} = p_{21}^s = 1$
- Since spot prices are $p_1 = (p_{11}, p_{12}) = (1, \frac{1}{2})$
- future prices are $p_2 = (p_{21}, p_{22}) = (\frac{1}{2}, \frac{1}{8})$
- In period 2, future spot prices $p_2^s = (1, \frac{1}{4})$
- With nominal interest rate r
- Arbitrageurs equate $p_{21}(1+r) = p_{21}^s$
- Hence, r = 1

Summary of 5.5

- Time can be incorporated as a Day 1 Market
 - Spot and Future prices
- Or, as a Rational Expectation Equilibrium with Borrowing and Lending
 - may not hold if:
 - 1. No arbitrageurs to ensure expectations are rational
 - 2. Consumers could go bankrupt to avoid repaying
 - 3. Uncertain about future preferences or technology
- Homework: Riley 5.5-1~5; 2008 finals Q3