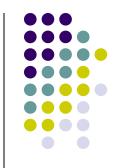
General Equilibrium and Efficiency with Production

Joseph Tao-yi Wang 2009/12/4

(Lecture 13, Micro Theory I)

What We Learned from Exchange Economy and Robinson Crusoe?



- Pareto Efficient Allocation (PEA) Optimum
 - Cannot make one better off without hurting others
- Walrasian Equilibrium (WE) Price Vector
 - When Supply Meets Demand
 - Even if there is only one person Robinson Crusoe
- 1st Welfare Theorem: WE are PEA
 - Schizophrenic Robinson Crusoe achieves optimum
- 2nd Welfare Theorem: PEA supported as WE
- These also apply to the general case as well!

The General Model: Firms

- F Firms: f=1, 2, ..., F
- Production Plan $y^f = (y_1^f, \dots, y_n^f) \in \gamma^f$
- Production Set $\gamma^f \subset \mathbb{R}^n$
- Production Plan for the Economy $\{y^f\}_{f=1}^F$
- Aggregate Production Plan

$$y = \sum_{f=1}^{F} y^f$$

• Aggregate Production Set γ

The General Model: Consumers

- n Commodities (are private): 1, 2, ..., n
- *H* Consumers: $h = 1, 2, \dots, H$
 - Consumption Set: $X^h \subset \mathbb{R}^n$
 - Endowment: $\omega^h = (\omega_1^h, \cdots, \omega_n^h) \in X^h$
 - Consumption Vector: $x^h = (x_1^h, \dots, x_n^h) \in X^h$
 - Utility Function: $U^h(x^h) = U^h(x_1^h, \cdots, x_n^h)$
 - Consumption Allocation: $\left\{x^h\right\}_{h=1}^H$
 - Aggregate Consumption and Endowment:

$$x = \sum_{h=1}^{H} x^h$$
 and $\omega = \sum_{h=1}^{H} \omega^h$

The General Model: Shareholdings

- All firms are owned by consumers.
- Consumer h has θ^{hf} ownership shares in firm f

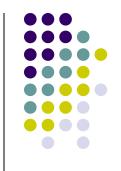
Ownership share must sum up to one:

$$\sum_{h=1}^{H} \theta^{hf} = 1, f = 1, \cdots, F$$

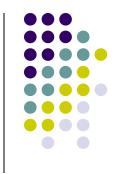
The General Model: Feasible Allocation

- A allocation is feasible if
- The sum of the <u>net</u> demands doesn't exceed aggregate <u>production plan</u>: $x \omega \le y$
- A feasible plan for the economy $\{\hat{x}^h\}_{h=1}^H, \ \{\hat{y}^f\}_{f=1}^F$ is Pareto efficient if
- there is no other feasible plan $\{x^h\}_{h=1}^H, \ \{y^f\}_{f=1}^F$
- that is
- strictly preferred by at least one: $U^i(x^i) > U^i(\hat{x}^i)$
- and weakly preferred by all: $U^h(x^h) \geq U^h(\hat{x}_{\epsilon}^h)$

Walrasian Equilibrium



- Price-taking firms and consumers: Prices p > 0
- Consumers: *h*=1, 2, ..., *H*
 - Firm Profit: $p \cdot y^f$
 - Total Dividend Payments: $\sum \theta^{hf} p \cdot y^f$
 - Wealth: $W^h = p \cdot \omega^h + \sum_f^J \theta^{hf} p \cdot y^f$
 - Budget Set: $\{x^h \in X^h | p \cdot x^h \leq W^h\}$
- Consumer interest best served by profit maximzing firm managers



- Price-taking: Prices p > 0
- Firm f chooses production plan \overline{y}^f to max. profit $p \cdot \overline{y}^f \geq p \cdot y^f$, for all $y^f \in \gamma^f$, $f = 1, \dots, F$
- Consumer h chooses most preferred consumption in her budget set: $\overline{x}^h \succ_h x^h$ for all x^h such that $p \cdot x^h \leq W^h$
- Vector of Excess Demand: $\overline{e} = \overline{x} \omega \overline{y}$
 - Total consumption $\overline{x} = \sum \overline{x}^h$
 - Total production $\overline{y} = \sum \overline{y}^f$

Definition: Walrasian Equilibrium Prices

- The price vector $p \ge 0$ is a Walrasian Equilibrium price vector if
- there is no market in excess demand ($\bar{e} \leq 0$),
- and $p_j = 0$ for any market that is in excess supply ($\overline{e}_j < 0$).

 We are now ready to state and prove the "Adam Smith Theorem" (WE → PEA)...

Proposition 5.2-1: First Welfare Theorem

- If preferences of each consumer satisfies LNS, then the Walrasian Equilibrium allocation is Pareto efficient.
- Proof:

Proposition 5.2-3: Second Welfare Theorem

- Let $\{\hat{x}^h\}_{h=1}^H$, $\{\hat{y}^f\}_{f=1}^F$ be a PEA. Suppose:
- 1. Consumption vectors are private
- 2. Consumption sets X^h are convex
- 3. Utility functions $U^h(\cdot)$ are continuous, quasiconcave, and satisfies LNS
- 4. There is some $\underline{x}^h \in X^h$ such that $\underline{x}^h < \hat{x}^h$
- 5. Production sets γ^f convex and of free disposal
- Then there exist a price vector $p \geq 0$ such that $x^h \succ_h \hat{x}^h \Rightarrow p \cdot x^h > p \cdot \hat{x}^h$ (Consumers Max Utility) $y^f \in \gamma^f \Rightarrow p \cdot y^f \leq p \cdot \hat{y}^f$ (Producers Max Profit)

Summary of 5.2

- Pareto Efficiency:
 - Cannot make one better off without hurting others
- Walrasian Equilibrium: market clearing prices
- Welfare Theorems:
 - First: Walrasian Equilibrium is Pareto Efficient
 - Second: Pareto Efficient allocations can be supported as Walrasian Equilibria (with transfer)
- Homework: Exercise 5.2-1~3, J/R -