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A Price Taking Firm

e Maximize Profit vs. Minimize Cost

e Cost Function (the Minimized Cost):
e Input Price Change (Revealed Preference)
e Normal Input (Input Price Effect on MC)
e Convex Cost Function (Revealed Preference)

e Profit Function (The Maximized Profit):
e First Laws of Supply (Revealed Preference)

e First Laws of Input Demand (Revealed Preference)
e Convex Profit Function (Revealed Preference)

e LR vs. SR: Le Chatelier’s Principle (RP too!)



Producer vs. Consumer

o Profit

e Profit Maximation
e Cost

e Cost Function

e Profit Function

e Input Price Change

e First Laws of Supply
and Input Demand
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Why do we care about this?

e Suppose you decide to run a small business...
e You face a changing environment
e And make various business choices everyday

e Aren’t you just another “consumer” in the
economy maximizing “utility™?

Profit maximization similar to utility maximization?

e What will your actions tell us about your choices?

How general can revealed preference be?

e Are these convincing?




Dual of Maximizing Profit:
Minimizing Cost

e Production Plan (z,q) € v/ q= F(z)
e Input z, Input Prices r
e Cost Function C(r,q) = H‘{ziﬂ {?" - 2[(2,q) € ’?’f}

» Single output: C(r,q) = min{r - z|F(z) — ¢ > 0}

e Lemma: Gradient of the Cost Function
[f cost minimizing z(q, ) is continuous over 7,

oC
8?"1;

Then, (r,q) = z;(r,q) fori=1,--- ,n.



Lemma: Input Price Change i
(Gradient of the Cost Function)

Proof: C’(Toj q) = V.20 <0 zlj

Crt,q)=r'- -2 <rt. 2"
0

0

Since input vector z” is optimal for input price r

1 1

is optimal for input price r
C(Tlv Q) o O(TO? Q) < (Tl o TO) ' ZO:
C(rt,q) —C(>r°, q) > (r' — 1Y) - 2

Input vector z

Suppose ! — 70 = (0, 7} —7r?, -+ 0)
C(r! — C(rY
= zi(r', q) < ( ’qz 0( 9) < zi(r’, q)
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Lemma: Input Price Change
(Gradient of the Cost Function)

e Hence we have HC

a?,,?; (T? Q) — Z‘i(rte Q)

e Note: Only Revealed Preferences + continuity

oM
— fL’C | UO
Op; (p, U")



Proposition 4.2-1: Effect of
Input Price Change on MC

e Consider the effect on MC:
2 .
0 MC, — 0°C 0 0C 0Oz
or; or;0q; 8q@ or, Oy,
e Hence, arise In price of input j raises MC of
output I Iff iInput J Is a normal input
® 0* M - 83)5
O 31%'519;; B Ip;
e Example: Quasi-linear Production




Proposition 4.2-2 Soes
Convex Cost Function -

e If the production set is convex, then the cost
function is a convex function of outputs.

i.e. For any ¢", ¢!,

C’(q)‘:, r) < (1 =MX)C(¢° r)+ XC(q¢", r)

e (Compare: Concave Expenditure Function,
out slightly different — there we fixed utility
evel and changed prices; here we fix input
orices and change quantity produced.)




Proposition 4.2-2
Convex Cost Function

e Proof: Since 20 ~ ¢", z1 ~ ¢,
Clq°,r)=1r-2° Cl¢',r)=r- 2

2 = (1—)\)z0—|—/\z1,q)\: 1=X)-¢"+X-¢
e IS feasible, since production set is convex.
e Hence, C(¢*,r) <r- 2"
e Since C'(q, r) minimizes cost.
e Thus, (1 — )\)C(qo.,.?“) + )\C(ql,,fr)

= (1 —)\)T-ZO—I—)\T-ZIZT-ZA > C(q}‘jfr)
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Profit Function

e Production Plan: yf — (y{j n ayrf;)

e Net output: y/ >0 Netinput: y! < 0

o Profit: p-y = Z Pi*Yi— Z pj - (—v;5)
iayi;"o jayj<0
| —

revenue cost

e Profit Function (Maximized Profit):
[(p) = max {p-yly € '}
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Proposition 4.2-3: Price Change
Effect on Inputs and Outputs

e Consider the producer problem
[(p) = max {p-yly € v/}

Let 4" be profit maximizing for prices p"

y' be profit maximizing for prices p'
= Ap-Ay=(p' —p")- (¥ —¢°) 20
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Proposition 4.2-3: Price Change coce
Effect on Inputs and Outputs

Proof:
p’ -y’ >p’ -yt ptoyt >pty”

Since yY is profit maximizing for prices p"

y! is profit maximizing for prices p'

" (' =9") =0, p(y' —y") =0

= Ap-Ay=(p' —p") - (y' —y’) 20
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Corollary: First Laws of Supply| ss::
and Input Demand

e This Is true for any pair of price vectors

e S0, If only the price of commodity J changes,
Ap; - Ay; >0

e First Law of Supply:

Ay;
For output y; > 0, we have —= >0
Ap;

e First Law of Input Demand:

For input y; < 0, we have 9 <
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Proposition 4.2-4
Convex Profit Function e

e The profit function is convex.

i.e. For any pY, p',
M(p*) < (1= NI(p") + AT(p')

e (Compare: Concave Expenditure Function.)

e This Is stronger than Prop. 4.2-3...

e Note similar relation between 2.3-1 & 2.3-2

e |s the Indirect Utility Function (quasi-)convex?
e Yes! See Jehle & Reny (2001), p.28,Thm 1.6+



Proposition 4.2-4 $34-
Convex Profit Function

Proof: y” profit maximizing at pj,
m(p®) =p”-y" > p° -y,
M(p') =p'-y' >p' -y’
Since II(p) maximizes profit.

Hence,

(1 — MI(P°) + AIL(p")
> (1= v + A" - v?)]
=p* -yt =T1(p")
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Application: SR vs. LR
Adjustment to Price Change

e Firm face price p°, choose production plan 3"
e One (input or output) price changes p° = p'
e Assume firm'’s feasible set more limited in SR

o Set of feasible LR plans: 7Y
» Set of feasible SR plans: v° (y°) C ~

e Le Chatelier Principle: Own price effects are
larger in the LR than in the SR. I.e.

Ay, S 5‘%‘9
Op; — Op;
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Proposition 4.2-5:
Le Chatelier Principle

e LR Profit Function: II(p)
e SR Profit Function: 115 (p) < II(p) for p # p°
But ITj (p”) = TI(p°)
e SR constraints bind tighter (only if plan changes)
e 115 (p)
o \P

0 1 :



Proposition 4.2-5: $34-
Le Chatelier Principle

Proof: H(pO) — PO ' y(po) > po : Z}(Pl)a

M(p') =p" - y@') > p' - y("),
Since y(p") is most profitable at price vector p”
(p

1) is most profitable at price vector p'
(p') —11(p") < (p' = ") -y(p"),
I(p') —1(p") = (" —p") - y(»")

Suppose pt —p® = (0, ,pi —p, -+ ,0)
II(p') — II(p"
= yph) > S > )



Proposition 4.2-5:
Le Chatelier Principle

e Hence, olr O°Il Oy,
o ya(p); 2
op; op; op;
e Similarly, OII3 O°1ly Oy

— S _
oy, Y (1), o op,

aTTS
e Since, 5 = ‘;g“ at p? and II(p) > II§ (p)
e Hence, Jy; 0?11 < 82H,§ B 8yf

Op; Op? — 0p?  Op;
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What Have We Learned?

e Cost Function (the Minimized Cost):
e Input Price Change (Revealed Preference)
e Normal Input (Input Price Effect on MC)
e Convex Cost Function (Revealed Preference)

e Profit Function (The Maximized Profit):
e First Laws of Supply (Revealed Preference)
e First Laws of Input Demand (Revealed Preference)
e Convex Profit Function (Revealed Preference)

e LR vs. SR: Le Chatelier's Principle (RP too!)

e Homework: Riley - 4.2-3, 4, 6, 7, J/IR - TBA

21



What Have We Learned?

e Cost Function vs. Profit Function

e Method of "Revealed Preferences” used in:
1. Input Price Change

2. First Laws of Supply

3. First Laws of Input Demand

4. Cost and Profit Functions are Convex

5. Le Chatelier Principle
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Producer vs. Consumer

o Profit

e Profit Maximation
e Cost

e Cost Function

e Profit Function

e Input Price Change

e First Laws of Supply
and Input Demand
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