Introduction to Real Analysis, Quiz 13

- 1. (30 pts) Let $\{f_n\}$ be a sequence of functions. What does it mean for " $f_n \to f$ uniformly"?
- 2. (30 pts) Prove that the following function sequence converges pointwisely, calculate its limit and determine whether it converges uniformly.

$$f_n(x) = x^n, \ x \in [0, 1]$$

- 3. (30 pts) State Taylor's Theorem.
- 4. (24 pts) Prove that $f_n(x) = \sum_{k=0}^n \frac{x^n}{n!} f^{(n)}(0)$ converges uniformly to f(x) on [0, 100] for $f(x) = \sin x$.
- 5. (24 pts) Suppose $a \in \mathbb{R}$, and f is twice differentiable on (a, ∞) . Let |f(x)|, |f'(x)|, |f''(x)| be bounded and M_0, M_1, M_2 are their least upper bounds respectively. Prove that

$$M_1^2 \le 4M_0M_2$$

Hint. Use Taylor's Theorem to prove, if h > 0,

$$f'(x) = \frac{1}{2h} [f(x+2h) - f(x)] - hf''(\xi)$$

for some $\xi \in (x, x + 2h)$. Hence

$$M_1 \le \frac{M_0}{h} + hM_2.$$

Pick appropriate h in terms of M_0, M_2 .