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f"(u).

Given I open in X.

Consider x -f(x). We'll show X is interior of f(x).

Note f(x) EU, so I ball Ne(fix1) < 2.

By conti off, E8-ball No(x) thatmaps into NaCf(x)).CU.

This means Na(X) Cf(M), so xis interior of f(x).
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Let B =Eball about f(p)

Then pc f(B), which is open by assumption.

Since p is interior pt of f"(B), Isome ball Ng(P)cf(B).
This 8 is what we want, since f(N0(p1)cB.

So f is conti #.
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It:Given I open in Z.

=>g(U) is open in Y.

=> f"(g()) is open in X

=>(gofs"(e) is open
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Ihm:f:X- Yonti ESXclosed K in Y, f(K) is closedin X.

iprof ideafile? Ifif(x) ofthe

*
Let [UaY=[f[Val3. ·gsproof, "Let [Va3 cover of f(X).
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Byopt of X, I finite subcoxer: Mar, ..., Man

& Then Vas,..., van cover f(x).
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f:X*t -> R, then f(x) closed andbounded.

f:X ct -> IR, then of achieves its maximum andminimum.

Ihm:If f: x -> Y bijection, conti, N:cpt, ->f"is conti

pfc:M open in X => U is closed -> U is apt => f"CHY is opt. -> fi(MY) is closed. -> f"(M) is open
#


