## 21: Continuous Functions



The : $f: X \rightarrow Y$ cont $\Leftrightarrow \forall$ open set $U$ in $Y$ $f^{-1}(Y)$ is seen in $X$只: $f^{-1}(u)=\{x \mid f(x) \in U\}$.


Given $u$ open in $X$.
Consider $x \in f^{-1}(u)$. Well show $x$ is intent of $f^{-1}(u)$.
Note $f(x) \in U$, so $\exists$ ball $N_{\varepsilon}(f(x))<U$.
By contr of $f, \exists \delta$-ball $N_{\delta}(x)$ that maps into $N_{\varepsilon}(f(x)) \subset U$.
This means $N_{2}(x) \subset f^{-1}(u)$, so $x$ is interior of $f^{-1}(u)$.

$$
(F) \text {. Fix } p \in X, \varepsilon>0 \text {. }
$$



Then $p \in f^{-1}(B)$, which is open by assumption.
Since $p$ is interior pt of $f^{-1}(B), \exists$ some ball $N_{\delta}(p) \in f^{-1}(B)$.
This $\delta$ is what we want, since $f\left(N_{\delta}(p)\right) \subset B$
So $f$ is cont \#.

Consequences, $: \underline{T h m} X \xrightarrow{f} Y \xrightarrow{g} Z, f . g$ cont.
$\Rightarrow g \circ f$ is conti.
pf: Given $U$ open in $Z$
$\Rightarrow g^{-1}(u)$ is open in $Y$.
$\Rightarrow f^{-1}\left(g^{-1}(u)\right)$ is open in $X$
$\Rightarrow(g \circ f)^{-1}(u)$ is open in $X_{4}$.
The : $f: X \rightarrow Y$ ant. $\Leftrightarrow \forall$ closed $K$ in $Y, f^{-1}(K)$ is closed in $X$. prof idea: $f^{-1}(k)=\left[f^{-1}\left(k^{c}\right)\right]^{c}$.
The: $f: X \rightarrow Y$ cont, $X$ pt $\Rightarrow f(X) \mathrm{cpt}$
(proof) ${ }^{(1)}$ Let $\left\{V_{\alpha}\right\}$ aver of $f(x)$.
${ }^{(2)}$ Let $\left\{u_{\alpha}\right\}=\left\{f^{-1}\left(V_{\alpha}\right)\right\}$.

(3) By opt of $x, \exists$ finite subcover : $u_{\alpha 1}, \cdots, u_{\alpha n}$
${ }^{(4)}$ Then $V_{\text {al }}, \cdots, V_{\text {an }}$ aver $f(x)$.

Cor $f: \chi_{\text {est }} \rightarrow \mathbb{R}$, then $f(x)$ closed and bounded
$f: X$ cot $\rightarrow \mathbb{R}$, then $f$ achieves its maximum and minimum.

The : If $f: X \rightarrow Y$ bijection, conti, $X:$ copt, $\Rightarrow f^{-1}$ is cont.
pt, : $u$.pen in $X \Rightarrow u^{c}$ is closed $\Rightarrow u^{c}$ is copt $\Rightarrow f^{-1}\left(u^{c}\right)$ is copt. $\Rightarrow f^{-1}\left(u^{c}\right)$ is closed, $\Rightarrow f^{-1}(u)$ is open \#

