17 Complete Spaces

Then: Compact metric spaces are complete.
(p1). Let
$$\{X_n\}$$
 be Couchy eq. in X.
Since X cpt, it is equations to pt x in X
Fix $E > 0$, $\{X_n\}$ converging to pt x in X
Fix $E > 0$, $\{X_n\}$ converging to pt x in X
Fix $E > 0$, $\{X_n\}$ convergence $\exists N x \in t, j > N \Rightarrow d(X_n, X_j) < \frac{1}{2}$.
Let $N = \max(N_n, N_n)$.
If $n > N$, then $d(N_n, x) \equiv d(x_n, X_n) + d(X_n, X_n) < \frac{1}{2}$.
Let $N = \max(N_n, N_n)$.
If $n > N$, then $d(N_n, x) \equiv d(x_n, X_n) + d(X_n, X_n) < \frac{1}{2}$.
So, give $E > 0$, fixed N that shows $X_n \to X_n$.
Since $\{X_n\}$ were arbitrary. X is complete.
Cor: $[\mathbb{R}^n]$ is complete.
(p1). If $\{X_n\}$ Couby, it is bounded.
(wby? Fixed E>2, $\exists N < t, n = N$ implies $d(x_n, x_n) < \xi_n$.
Let $R = \max\{d(X_n, x_n), d(x_n, x_n) \in \xi_n\}$.
So $B_n(X_n) = \text{complete}$.
So $\{X_n\}$ converges.

50 IR" is complete. #.

$$E_{X} : Does \quad X_{n} = |\pm \frac{1}{2} \pm \frac{1}{3} \pm \dots \pm \frac{1}{n} \quad converges ?$$
Consider $|X_{n} - X_{m}| = |\frac{1}{m+1} \pm \dots \pm \frac{1}{n}| \ge |\frac{1}{n} \pm \frac{1}{n} \pm \frac{1}$

BOUNDED SEQUENCES

Def = monotonely increasing seg = Sn < Sn+1
decreasing seg = $S_n \ge S_{n+1}$
j F
Thm: Bounded monotonely seg converges (to their sup or inf).
$(rf) Given \{s_n\} et s = cne(\{s_n\})$
$C \forall E > 0 = N (+ S - E < C) < C$
I to the Murshi Sick of the Number for E
OLL VILEN VILE 17 - ANSAN SU VILL 14 WELLS 101 CH.
• Write $s_n \rightarrow +\infty$ if $\forall M \in \mathbb{R}$, $\exists N s.t. n > N \Rightarrow s_n > M$
Similarly, $S_n \rightarrow -\infty$ if $\forall M \rightarrow S_n < M$.
,
• Given $\{S_n\}$, let $E = \{subsect of limits\}$ (allow $+\infty, -\infty$).
Let s*= sup E livnsup Sn , "upper limit" of E
$s_{*} = \inf E \leftarrow \lim inf S_n$, "lower limit" of E
Meanwhile, $\lim_{n \to \infty} S_n = \lim_{k \to \infty} (s_k P S_k)$
$\lim_{n \to \infty} S_n = \lim_{k \to \infty} (\inf_{k \neq k} S_n)$
$E_X = If S_K \rightarrow S$ then limit $S_K = \lim_{k \to \infty} \sup_{k \to \infty} S_K = S$
$S_{\rm K} = \{0.1, \frac{3}{2}, 0.11, \frac{4}{3}, 0.111, \frac{5}{4}, 0.1111, \frac{5}{5}, \cdots \}$
$S^* = 1$ $S_* = \frac{1}{9}$