17 Complete Spaces

Thy: Compact metric spaces are complete.
($p f$). Let $\left\{x_{n}\right\}$ be Cauchy seq. in X.
Since $X \mathrm{cpt}$, it is sequentially opt.
so \exists subset. $\left\{x_{n k}\right\}$ converging to pt X in X
Fix $\varepsilon>0,\left\{x_{n}\right\}$ Candy soy. implies $\exists N_{1}$ st. i. $j>N_{1} \Rightarrow d\left(x_{i}, x_{j}\right)<\varepsilon / 2$
$\left\{x_{n+s}\right\}$ converges implies $\exists N_{2} s t . \quad n_{k}>N_{2} \Rightarrow d\left(x_{n+}, x\right)<\varepsilon / 2$
Let $N=\max \left(N_{1}, N_{2}\right)$,
If $n>N$, then $d\left(x_{n}, x\right) \leq d\left(x_{n}, x_{n k}\right)+d\left(x_{n}, x\right)$ for any $n_{k}>N$

$$
<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

So, given $\varepsilon>0$, fired N that shows $x_{n} \rightarrow X$ \#
Since $\left\{x_{n}\right\}$ was arbitrary, X is compete.

Cor: $[0,1]$ is complete,
K cells $\subset \mathbb{R}^{n}$ complete.
Closed subset if a opt space is complete.

Cor: \mathbb{R}^{n} is complete.
($p f$). If $\left\{x_{n}\right\}$ Cauchy, it is bounded
why? Fixed $\varepsilon>0, \exists N$ at. $n . m \geq N$ implies $d\left(x_{n}, x_{m}\right)<\varepsilon$,
Let $R=\max \left\{d\left(x_{N}, x_{1}\right), \ldots, d\left(x_{N}, x_{m}\right), \varepsilon\right\}$.
Seq is bonded by $B_{R}\left(x_{N}\right)$.
So $B_{R}(x) \subset$ some closed ball in \mathbb{R}^{n},
and since closed ball in \mathbb{R}^{n} is compact \Rightarrow complete.
so $\left\{x_{n}\right\}$ converges.
so \mathbb{R}^{n} is complete. \#.

Ex: Does $X_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ converges ?
Consider $\left|x_{n}-x_{m}\right|=\left|\frac{1}{\substack{\uparrow \\ n \rightarrow m}}\right| \frac{1}{m+1}+\cdots+\frac{1}{n}\left|\geq\left|\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}\right|=\frac{n-m}{n}=1-\frac{m}{n}\right.$.
Let $n=2 m,\left|X_{2 m}-X_{m}\right|>\frac{1}{2}$, which implies seq not Cauchy.
so doecn't converge.
Ex: $x_{1}=1, \quad x_{2}=2, \quad x_{n}=\frac{1}{2}\left(x_{n-1}+x_{n-2}\right)$ is Cauchy so converges.
Q : If X is not complete, can it be embedded to one that is? ex: \mathbb{Q} ex: \mathbb{R}.

Thu : Every metric space (X, d) has a completion $\left(X^{*}, d\right)$.
Idea: Given X, let $X^{*}=\{$ all Cauchy eggs in X under equivalent relationship.)
(where $\left\{p_{n}\right\} \sim\left\{q_{n}\right\}$ if $\lim _{n \rightarrow \infty} d\left(p_{n}, q_{n}\right)=0$)
For P, Q $\subset X^{*}$
Let $\Delta(P, Q)=\lim _{n \rightarrow \infty} d\left(p_{n}, q_{n}\right)$ where $\left\{p_{n}\right\},\left\{q_{n}\right\}$ represent P, Q.
Then X^{*} is complete with X isometrically embedded in X^{*}

BOUNDED SEQUENCES
Def : monotonely increasing seq: $S_{n} \leq S_{n+1}$
decreasing seq: $S_{n} \geq S_{n+1}$
The: Bounded monotinely seq converges. (to their sup or inf). (pf). Given $\left\{s_{n}\right\}$, let $s=\sup \left(\left\{s_{n}\right\}\right)$.

So $\forall \varepsilon>0, \exists N$ s.t. $s-\varepsilon<s_{N} \leq s$
but then $\forall n \geq N \quad S_{N}<S_{n}<S$, so this N works for ε.

- Write $S_{n} \rightarrow+\infty$ if $\forall M \in \mathbb{R}, \exists N$ s.t. $n>N \Rightarrow S_{n}>M$

Similarly, $S_{n} \rightarrow-\infty$ \& $\forall M \quad S_{n}<M$.

- Given $\left\{S_{n}\right\}$, let $E=\{$ saber of limits $\}$ (allow $+\infty,-\infty$).

Let $s^{*}=\sup E \longleftarrow \limsup S_{n}$, "upper limit" of E
$s_{*}=\inf E \longleftarrow \liminf S_{n}, ~ "$ lower limit" of E
Meanwhile, $\lim _{\text {ms up }} S_{n}=\lim _{k \rightarrow \infty}\left(\sup _{\substack{\text { up }}} S_{N}\right)$

$$
\liminf ^{2} S_{n}=\lim _{k \rightarrow \infty}\left(\inf _{k \not 2 N} S_{N}\right)
$$

Ex : If $S_{k} \rightarrow S$ then $\liminf S_{k}=\limsup s_{k}=S$

$$
\begin{aligned}
& S_{k}=\{0.1,3 / 2,0.11,4 / 3,0.11,5 / 4,0.1111,6 / 5, \ldots\} \\
& s^{*}=1, S_{*}=1 / 9
\end{aligned}
$$

