14: Connected Sets, Cantor Sets

A base (basis) for topology is {Vd} collection
such that
∀ x ∈ open U, ∃ Vd st. x ∈ Vd ⊂ U.

· So every open set is union of these elements.

CONNECTED SETS.

Def: Say A.B in X are separated. if both AnB and AnB are empty. Say E is connected if E is mt union of two separated sets. "coll a reportion" EX In IR², E = {(X, Y) : X, Y \in Q} } not connected.

• E is connected ⇔ E is not union of two relative open set in E ⇔ closed

Thm : [a, b] is connected.cpF) If not, then \exists sets A, B with $a \in A$.Let s = sup A. Then $s \in \overline{A}$. So $s \notin B$ Then $s \in A$. so $s \in \overline{B}$ Then $\exists (s-\varepsilon, s+\varepsilon) containing no pt of B$ Then $(s-\varepsilon, s+\varepsilon) c A \rightarrow s = sup A$