14: Connected Sets, Cantor Sets

Recall: $7 \mathrm{hm}:\left\{K_{\alpha}\right\}$ opt subsets of X
FID $\left[\begin{array}{l}\text { If any finite sabcollection has nonempty } \\ \text { intersection, then } \widehat{\alpha} K_{\alpha} \neq \phi .\end{array}\right.$

Cor $\left\{K_{n}\right\}$ a sequence pt sets. nested,
Then $n_{n \in A} k_{n}$ is not ϕ.
$\underline{T h m}=K$ is opt $\Leftrightarrow A_{n y}$ collection of closed set $\left\{D_{\alpha}\right\}$ satisfies the FIP:
$\left[\begin{array}{l}\text { If every finite subcollection has non-empty } \\ \text { intersection, then } \alpha D \alpha \neq \phi\end{array}\right]$
pf (\Rightarrow). Given $\left\{D_{\alpha}\right\}$ closed, these are closed subset of opt X,
so they are compact. Apply precious the *
(\Leftarrow). (practice).

- Cantor set.

$\mathrm{K}_{3} \mathrm{HM} \mathrm{HH} \mathrm{HH} \mathrm{HH} \quad$. C consists of real numbers, whose turnery expansion contains only O or 2 .

- Show C is uncountable (use diagondization argument).
C has non-end points of K_{n} point : . $020202 \ldots$
Every pt is lop.
C has measure zero: $\forall \varepsilon>0, C$ can be covered by intervals with total length less than ε
- A base (basis) for topology is $\left\{V_{\alpha}\right\}$ collection such that

$$
\forall x \in \text { open } U, \exists V_{\alpha} \text { st. } x \in V_{\alpha} \subset U \text {. }
$$

- So every open set is union of these elements.

CONNECTED SETS.
Def: Say A, B in X are separated. if both $A \cap \bar{B}$ and $\bar{A} \cap B$ are empty.

- Say E is connected if E is not union of $\underbrace{t_{w o} \text { separated sets. }}_{\text {"call a apportion" }}$

Ex $\ln \mathbb{R}^{2}, E=\{(x, y): x, y \in \mathbb{Q}\}$ not commented.

- E is connected $\Leftrightarrow E$ is not union of two relative open set in E

$$
\Leftrightarrow
$$ closed

The: $[a, b]$ is connected.
(pf). If not, then \exists sets A, B with $a \in A$.
Let $s=\sup A$. Then $s \in \bar{A}$. So $s \notin B$
Then $s \in A$. so $s \in \bar{B}$
Then $\exists(s-\varepsilon, s+\varepsilon)$ containing no pt of B
Then $(s-\varepsilon, s+\varepsilon) \subset A * s=\sup A \#$.

