12: Relationship of Compact Sets to Closed Sets

Recall = A set K in metric space χ is compact if exery open cover of K has a finite subcover.
The: $E \subset Y \subset X$
E is open in $Y \Leftrightarrow E=Y \cap G$ for some G open in X.
The $K \subset Y \subset X, K$ compact in $Y \Leftrightarrow K$ compact in X. op): (\Rightarrow) (Assume K opt in Y)

START HERE \rightarrow Consider open cover $\left\{U_{\alpha}\right\}$ of K in X
Let $V_{\alpha}=U_{\alpha} \cap Y$. Then $\left\{V_{\alpha}\right\}$ covers K in Y.
By aptness of K in Y, \exists finite subover $\left\{V_{\alpha,}, \cdots, V_{\alpha n}\right\}$ Then $\left\{u_{d,}, \cdots, u_{\alpha_{n}}\right\}$ are finite subaver for K in X as desired. (\Leftarrow) Consider open cover $\left\{V_{\alpha}\right\}$ of K in Y. by the above, $\exists U_{\alpha}$ sit. $U_{\alpha} \cap Y=V_{\alpha}$.
$\left\{U_{\alpha}\right\}$ cover K in X, so \exists finite subcover $\left\{U_{\alpha_{0}}\right\}_{i=1}^{N}$,
Then $\left\{V_{\alpha i}\right\}_{i=1}^{N}$ is fine subcover of $\left\{V_{\alpha}\right\}$ for K in $Y_{\#}$.
MORAL : Compactness is an intrinsic puberty of a set
Tho : Compact set are closed.
($p f$). $K c p t$, consider $p \notin K$, We'll show p has nbhd not intersecting K. (so p is integer to K^{c})
$\forall q \in K$, let $V_{q}=N_{r / 2}(q), U_{q}=N_{r / 2}(p)$, where $r=d(p, q)$.
Notice $\left\{V_{q}\right\}$ cover K, so by cp teri of K, \exists finite subcaurr $\left\{V_{q_{1}}, \cdots, V_{q_{n}}\right\}$.
Then $W=u_{q_{1}} \cap u_{q_{2}} \cap \ldots \cap u_{q_{n}}$ is open
Claim $W \cap V_{q_{i}}=\phi$ for each i. Since $W \subset u_{q i}$ and $u_{q i} \cap V_{q i}=\phi$.
$\Rightarrow W$ is the desired nod $\#$

EX $(0,1)$ is not compact.
EX $\mathbb{R}($ in $\mathbb{R})$ is not compact. b/c not bounded, though it is closed.

Thm A closed subset B of opt set K is opt. (pf). Let $\left\{U_{\alpha}\right\}$ be open cover of B.

Notice B^{c} is open. So $\left\{U_{2}\right\} \cup\left\{B^{c}\right\}$ is open cover of K. By aptness, \exists finite subcover $\left\{U_{d_{1}}, \cdots, U_{d N}, B^{c}\right\}$ Notice $B^{c} \cap B=\phi$, so $\left\{U_{\alpha}, \cdots, U_{\alpha N}\right\}$ covers B, and it is finite subcover as desired $\#$.

- Cor F closed, K cpt in metric spare X, then $F \cap K$ is compact.

Thm Nested closed intervals in \mathbb{R} are not empty.

$$
\binom{I_{n}=\left[a_{n}, b_{n}\right]}{\text { Nested: if } m>n, \text { then } a_{n} \leq a_{m} \leq b_{m} \leq a_{n}}
$$

spf) Let $X=\sup \left\{a_{i}\right\}$, exists b / c they're bounded by b_{1}
Clearly, $x \geq a_{i}$ for all $i, b / c$ it's the sup.
$x \leq b_{m}$ for all $m, b / c \quad b_{m}$ is an u.b. for all a_{m}. Fl,
ASIDE PROOF: \mathbb{R} is uncountable.
pf, Suppose $\mathbb{R}=\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$ countable.
choose I_{1} missing $x_{1}, I_{2} \subset I_{1}$, missing $x_{1}, x_{2}, I_{3} \subset I_{2}$, missing $x_{1}, x_{2}, x_{5}, \ldots$
Nested sequence $\Rightarrow \exists x \in \cap I_{n}, x$ is not in list $\neq 1$.

