08: Cantor Diagonalization and Metric Spaces

TODAN : MORE ABOUT CARDINALITY.
METRIC SPACE.
Thm = The union of countable sets is countable
grad = Say each A1, A3, A5, ... ore coulded.
Then A1 =
$$\int a_1, a_2, A_3, ..., a_4, a_5, ..., a_5$$

A2 = $\int a_1, a_2, a_3, a_4, ..., a_5$
A3 = $\int a_3, a_5, a_5, ..., b_5$
So $\bigcup A_1$ is countable.
Notation : Use $\bigcup Ad$ for paintly anomable collection, J : index set.
Ex: The set of computer programs is countable.
Recall: R is not countable (say R is anomable)
so, there are real numbers that are not computable
(ne count be specified to arbitrary precision.)
Given set A3, the power set 2^A is the set of all subcle of A.
 $Ex : A = \{ \bigoplus, D, A3 \}$, then $D = \{ \bigoplus, A3 \}$, $E = \{ A3 \}$, A_1 ,...
 $D \mapsto 1 \circ 1$ are demonts of 2^A .
 $E \mapsto \circ \circ 1$ which has 2^3 elements.

Contor's Thm (diagonal orgument).
For any A, we have
$$A \propto 2^{A}$$
.
proof: (controlution).
Suppose I bijection $f: A \rightarrow 2^{A}$
Then $a \mapsto f(a)$ a subset of A.
Let $B = f a : a \notin f(a)$?
· So if $B = f(x)$ for some $x \in A$
if $x \in B$, then $x \notin f(x) = B \rightarrow -$
if $x \notin B$, then $x \notin f(x) = B \rightarrow -$
if $x \notin B$, then $x \notin f(x) = B \rightarrow -$
if $x \notin B$, then $x \notin f(x) = B \rightarrow -$
if $x \notin B$, then $x \notin f(x) = B \rightarrow -$
if $x \oplus B$, then $x \notin f(x) = B \rightarrow -$
if $x \oplus B$, then $x \notin f(x) = B \rightarrow -$
if $x \oplus B$, then $x \notin f(x) = B \rightarrow -$
if $x \oplus B$, then $x \notin f(x) \Rightarrow x \in B = f(x) \rightarrow -$
if $x \oplus B$, then $x \notin f(x) \Rightarrow x \in B = f(x) \rightarrow -$
if $x \oplus B$, then $x \notin f(x) \Rightarrow x \in B = f(x) \rightarrow -$
if $x \oplus B$, then $x \notin f(x) \Rightarrow x \in B = f(x) \rightarrow -$
if $x \oplus B$, then $x \notin f(x) \Rightarrow x \in B = f(x) \rightarrow -$
if $x \oplus B$, then $x \notin f(x) \Rightarrow x \in B = f(x) \rightarrow -$
if $x \oplus B$, then $x \notin f(x) \Rightarrow x \in B = f(x) \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus x \oplus B \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus x \oplus B \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus x \oplus B \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus x \oplus B \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus B \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus B \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus B \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus B \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus B \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus B \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus B \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus B \rightarrow -$
if $x \oplus B$, then $x \oplus f(x) \oplus B \rightarrow -$
if $x \oplus -$

$$\begin{array}{c} \textbf{METRIC SPACES}. \\ \hline \textbf{(Q): How to measure distance ? in IRn ? in sequences ? \\ \hline \textbf{Def: A set X is a metric space if \exists metric $d: X \times X \rightarrow IR$ such that $\forall p, g \in X$, $\textcircled{O} d(p, g) \geq 0$ (=0 iff $p = g$)
 $\textcircled{O} d(p, g) = d(g, p)$. if we way if $\textcircled{O} d(p, g) \leq d(p, r) + d(r, g)$ $\forall r \in X$
 $\exists r \ with \ d(x, g) = |x-y|$ Write (IR, d) ? Eachdron metric in R^n
 IR^n with $d(x, \bar{g}) = [x-y|$ Write (IR, d) ? Eachdron metric in R^n
 IR^n with $d(x, \bar{g}) = [x-y|$ Write (IR, d) ? Eachdron metric in R^n
 IR^n with $d(x, \bar{g}) = \sum_{j=1}^{n} |x_{j-y_{j+1}}|$
 $f_{intrace metric}$.
 $Ex : prove of functions.$
 $d(f, g) = \int_{0}^{b} |f-g| dx$ space of confi function for $[a_{i}, b]$. $(\mathcal{C}(Ia, b))$
 $d(f, g) = \sup_{i \in R} |f(x_{i}) - g(x_{i})|$
 $f_{intrace metric}$.
 $Ex : space of functions.$
 $d(f, g) = \sup_{i \in R} |f(x_{i}) - g(x_{i})|$
 $f_{intrace metric}$.
 $f_{$$$