07: Countable and Uncountable Sets

TODAY: HOW TO CONT.

- Recall $\quad f: A \rightarrow B$.
"map" $\quad x \mapsto f(x)$
- If $C \subset A, D \subset B$

define $f(c)=\{f(x): x \in C\}$ the image of C

$$
f^{\prime \prime}(D)=\{x: f(x) \in D\} \text { the inesese inge of } D
$$

-When $f(A)=B$, say f is onto (a surjection)
When $f(x)=f(y)$ implies $x=y$, say f is $1-1$ (an injection) \hookrightarrow when f is 1-1 and onto, call f a bijection and say A and B are in "1-1 corresponding" Write $A \sim B$

- Elementary Counting use $A=J_{n}=\{1,2,3, \cdots, n\}$. or $J_{0}=\phi$.

Ex $\{1,(0,0, \pi\}=A \quad$ Say $|A|=4$.

Def: Call A finite if $A \sim J_{n}$, else A infinite.
Call A countable if $A \sim \mathbb{N}$.
Ex: \mathbb{N} is countable: use $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(x)=x$.
Ex A sequence x_{1}, x_{2}, \ldots is countable
NOTE: A set that can be "listed" in sequence is countable!
Ex: $\{2,3,4,5, \ldots\}$ is computable we $f(n)=n+1$

$$
\begin{aligned}
\{1,2,3, \cdots, k-1, k+1, k+2, \cdots\}, \text { use } f(n)=n & \text { if } n<k \\
f(n)=n+1 & \text { if } n \geq k
\end{aligned}
$$

The: \mathbb{N} is infinite. proof by induction on n, show $\mathbb{N} \nsim J_{n}$
base case if $\mathbb{N} \dot{\sim}\{1\}$, then consider $\mathbb{N} \backslash g(1)$ is ant empty
int step : if $\mathbb{N} x \mathrm{~J}_{n}$, then $\mathbb{N} x \mathrm{~J}_{n+1}$.
If there were $\mathbb{N} \xrightarrow{h} J_{n+1}=\{1,2, \cdots, n+1\}$
then \exists objection $\mathbb{N} \backslash\{h(n+1)\} \stackrel{\hat{\kappa}}{\hookleftarrow} J_{n}=\{1, \cdots, n\}$
\exists bijection f
$\downarrow f \quad$ M. Ejection $-x$.

- Ex $\mathbb{N} \sim 2 \mathbb{N}=\{2,4,6,8, \cdots\}$. use $f(n)=2 n$.
even
$\mathbb{N}, 2 \mathbb{N}$ has same cardinality_("size")
- Ex $\mathbb{Z}=\{\cdots,-3,-2,-1,0,1,2,3, \cdots\}$ is countable.

$$
7531246
$$

Thm : Every inf subset E of countable set A is countable. pf idea Let $A=\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$.

Let $n_{1}=\inf \left\{i: x_{i} \in E\right\}$

$$
\begin{aligned}
& n_{2}=\inf \left\{i: x_{i} \in E, i>n_{1}\right\} \\
& n_{k}^{\prime}=\inf \left\{i: x_{i} \in E, i>n_{k-1}\right\}
\end{aligned}
$$

Then $E=\left\{x_{n_{1}}, x_{n_{2}}, \ldots\right\} \neq$.

The：© is countable．

The：A countable $\Rightarrow A \times A$ countable．
The ： \mathbb{R} is not countable．
（D）Suppose \exists bijection
we an show it is not bijection

$$
\begin{aligned}
& 1 \longleftrightarrow 0 . \text { (1) } 2345678 \\
& 2 \longleftrightarrow 0.3 \text { (}) 415926 \\
& 3 \longleftrightarrow 0.14 \text { ゆ } 42135 \\
& 4 \longleftrightarrow 0.177(7) 77 \eta 7 \\
& 5 \longleftrightarrow 0.4132 \oplus 089 \\
& \text { - クククノク… = } x^{*} \text {, }
\end{aligned}
$$

x^{*} is not $f(n)$ for any n ．
Thm：For any $A, A \times 2^{A}$ the power set of A

