07: Countable and Uncountable Sets

TODAY : HOW TO CONT.
$- \underbrace{\operatorname{Re} \operatorname{cn}}_{\text{``maps'}} f: A \longrightarrow B$ $\xrightarrow{\operatorname{co-domain}}_{f'(x)} f(x) \xrightarrow{\operatorname{co-domain}}_{f'(x)} f(c)$
·If C < A, D < B
define $f(c) = \{f(x) : x \in C\}$ the image of C
$f'(\mathcal{P}) = \{ X : f(X) \in \mathcal{D} \}$ the inverse inverse of \mathcal{D}
• When $f(A) = B$, say f is <u>onto</u> (a surjection) $\rightarrow \rightarrow$
When $f(x) = f(y)$ implies $x = y$, say f is $1 - 1$ (an injection) \longrightarrow
When f is 1-1 and onto, call f a bijection \longrightarrow
and say A and B are in 1-1 corresponding
Write A~B
• Elementary Counting use $A = J_n = \{1, 2, 3, \dots, n\}$ or $J_o = \phi$.
$\underbrace{Ex \left\{1, \textcircled{0}, \textcircled{0}, \pi\right\}}_{1 \ 2 \ 3 \ 4} = A \qquad Say \ A = 4$
<u>Def</u> : Call A finite if $A \sim J_n$, else A infinite
Call A countable $f A \sim N$.
EX : N is countable : use $f: N \rightarrow N$ where $f(x) = X$.
Ex A sequence X1, X2, is countable
NOTE: A set that can be "listed" in sequence is countable!
$E_X : \{2, 3, 4, 5, \dots\}$ is countable, we $f(n) = n+1$
{1,2,3,, k-1, k+1, k+2,}, use f(n)=n if n <k< td=""></k<>
fcn)=nH if n≥k.

Thm : N is infinite.
proof by induction on n, show N ~ Jn.
but case, if N ~ f13, then consider N 300 is not only.
int step : if N ~ Jn, then N ~ Jno.
If there were N
$$\xrightarrow{h}$$
 Jno: $= \{1, 2, \dots, n\}$
the shipeline N $\{h(n+1)\} \leftarrow Jn = \{1, 2, \dots, n\}$
 $= hipeline f \ ff$
 $N = \frac{1}{2} hipeline - \frac{1}$

$$n_{k}^{i} = \inf\{i : x_{i} \in E, i > n_{k-1}\}$$

Then $E = \{x_{n_{1}}, x_{n_{2}}, \dots, \} \neq .$

Thm: Q is countable. Thm : A countable \Rightarrow A × A countable. Thm: IR is not countable. $1 \leftrightarrow 0.02345b78$ (pt) Suppose = bijection $2 \leftrightarrow 0.30415926$ we can show it is not bijection $3 \leftrightarrow 0.14 h 4 2 1 3 5$ $4 \leftrightarrow 0.1177777777$ 5 ~ 0.4132 0 8 9 $\circ_{-} 1 1 2 - \cdots = X^{*},$ X* is not f(n) for any n. Thm: For any A, A x 2^A the power set of A