04: The Least Upper Bound Property

- Defined order
arthmetic " + ", " x "
- Also, \mathbb{R} contains \mathbb{Q} as a subfield.

Associate to $q \in \mathbb{Q}$, the cut $q^{*}=\{r \in \mathbb{Q}: r<z\}$.
Check: $f: \mathbb{Q} \rightarrow \mathbb{R}$ preserve $t, x,<$
$q \mapsto q^{*}$
Then $\mathbb{Q}^{\prime}=\left\{q^{*}: q \in \mathbb{Q}\right\}$ is a subfield of \mathbb{R}.

Notice: length " $\sqrt{2}$ " sets in \mathbb{R}
as $r=\left\{q: q^{2}<2\right.$ or $\left.q<0\right\}$
check, use def of x, that $r^{2}=2^{*}$

- \mathbb{R} has the least upper bound property!

If A is collection of cuts with usb. β.
let $\gamma=v\{\alpha=\alpha \in A\}$, a subset of \mathbb{Q}.
check: γ is a cut \& $\gamma=\sup A$
norther (bod)
sled darin. no lager nutter.
γ is an $u b$ clearly, since γ contains all $\alpha \in A$.

- γ is least upper bound since if $\delta<\gamma, \exists x \in \gamma \backslash \delta$

Then $x \in$ some $\alpha \in A$, not in δ, so δ is not an $u b$.

Thm : \mathbb{R} is an ordered field, extend \mathbb{Q}, has lube. property
FACT: \mathbb{R} is only ordered field with the lube property.
Consequence: length " $\sqrt{2} "=\sup \{1,1.4,1.41,1.414,1.4147, \cdots\}$

$$
=1.4147 .
$$

- More generally, $a^{1 / n} \stackrel{\text { def }}{=} \sup \left\{r: r^{n}<a\right\}$

GREASTEST LOWEST BOUND (g / b) or INFIMUM, wite inf A
CONSEQS of LUB PROP.

- Archimedean prop of \mathbb{R}.

If $x, y \in \mathbb{R}, x>0$, then \exists positive integer n st.

$$
n x>y .
$$

Equiv : If $x>0, \exists n \in \mathbb{N}$ s.t. $\frac{1}{n}<x$
proof: $A=\{n x: n \in \mathbb{N}\}$
If A were bounded by y (e.g. $n x<y, \forall n \in \mathbb{N})$
So A has an lab, call it α
Then $\alpha-x$ is not u.b. for A.
hence $\alpha-x<m x$ for some $m \in \mathbb{N}$
So $\alpha<(m+1) x * \alpha$ is an upper bound for A.

- Thm : Between $x, y \in \mathbb{R}, x<y$.

$$
\exists q \in \mathbb{Q} \text { sit. } x<q<y \text {. }
$$

$[\mathbb{Q}$ is dense in $\mathbb{R}]$
proof: choose n st. $\frac{1}{n}<y-x$
consider multiples of $\frac{1}{n}$, these are unbounded.
Choose first multiple sit. $\frac{m}{n}>x$.
Claim $\frac{m}{n}<y$. If not, then $\frac{m-1}{n}<x$ and $\frac{m}{n}>y$.
But these imply $\frac{1}{h}>y-x$ *
PROPERTIES of SUP
(a) r is an abb. for $A \Leftrightarrow \sup A \leqq r$
(b). $\forall a \in A, a \leqslant \gamma \quad \Rightarrow \sup A \leqq \gamma$.
(c) $\forall a \in A, \quad a<r \quad \Rightarrow \sup A \leqq r$.
(d) $r<\sup A \quad \Rightarrow \exists a \in A$ s.t. $r<a \leq \sup A$.
(e) If $A \subset B$, then $\sup A \leq \sup B$
(f) To show $\sup A \leq \sup B$
one strategy : Show $\forall a \in A, \exists b \in B$ s.t. $a \leq b$
Thus $\sup A \leq \sup B$.

