04: The Least Upper Bound Property

Notice : length "
$$\int 2$$
" sets in IR
as $\gamma = \{g : g^2 < 2 \text{ or } g < 0\}$
check, use def of X, that $\gamma^2 = 2^*$

Thm : IR is an ordered field, extend Q, has lub. property.
FACT: IR is only ordered field with the lub. property.
Consequence: length
$$JZ' = \sup\{1, 1.4, 1.41, 1414, 1.4147, \dots\}$$

 $= 1.4147 \dots$
More generally, $a^{th} \stackrel{\text{def}}{=} \sup\{r: r^n < a\}$
GIR EASTEST LOWEST BOUND (g1b) or INFIMUM, write infA
CONSERS of LUB PROP.
Archimedean prop of IR.
If x, y & IR, x>0, then I positive integer n < 1.
 $nx > y$.
Equiv: If x>0, I n & s.t. $\frac{1}{n} < X$.
prof: $A = \{nx : n \in N\}$
ty outdution
If A were bounded by y (e.g. $nx < y$, $\forall n \in N$)
So A has an lub, call it d.
Then $d - x$ is not u.b. for A.
hence $d - x < mx$ for some $m \in M$
So $d < (mti) X \to X$ d is an upper bound for A.

• Thm	: Between X, Y & IR, X <y.< th=""></y.<>
	IZER s.t. X <z<y< th=""></z<y<>
	[Q is dense in IR]
proof :	choose n s.t. h < y-x
,	consider multiples of the , these are unbounded.
	Choose first multiple s.t. $\frac{m}{n} > \chi$,
	Claim $\frac{m}{n} < y$. If not, then $\frac{m-1}{n} < X$ and $\frac{m}{n} > y$.
	But these imply h > y-X-K

PROPERTIES of SUP: (a) r is an u.b. for $A \Leftrightarrow sup A \leq r$. (b) $\forall a \in A, a \leq r \Rightarrow sup A \leq r$. (c) $\forall a \in A, a < r \Rightarrow sup A \leq r$. (d) $\gamma < sup A \Rightarrow \exists a \in A s.t. r < a \leq sup A$. (e) If $A \subset B$, then $sup A \leq sup B$. (f) To show $sup A \leq sup B$ one <trategy : show $\forall a \in A, \exists b \in B s.t. a \leq b$ Thus $sup A \leq sup B$.