Individual Decision Making: Risk, Time and fMRI

Joseph Tao-yi Wang

5/22/2008

Measuring Risk Preferences

- Consider the following decision:
- You have two choices, A and B:
- One option gives you NT\$1,000,000
- The other option gives you NT\$10,000,000
- Would you pick one of them, or "fold" for a sure $\mathrm{NT} \$ 5,000,000$?
- ("Who wants to be a millionaire?")

Hypothetical Bias

- John: Suppose... I were to offer you one million dollars for one night with your wife.
- David: I'd assume you're kidding.
- John: Let's pretend l'm not. What would you say?
- Diana: He'd tell you to go to hell.
- John: I didn't hear him.
- David: I'd tell you to go to
- John: That's a reflex answer because you view the question as hypothetical. But let's say that there was real money backing it up. I'm not kidding. A million dollars. The night would come and go but the money could last a lifetime. Think of it. A million dollars. A lifetime of security... for one night. Don't answer right away. Just consider it; seriously?

Measuring Risk Preferences

- What if the choices are:
- Option A: 0 or $\$ 30,000,000$ with ($1 / 2,1 / 2$)
- Option B: \$10,000,000 for sure
- What would you choose?
-Why would one take Option B?
- $U(x)=x^{l-r}=x^{0.5}$ (for $r=0.5$)
- Diminishing Marginal Utility
- Are these too "hypothetical"?

Measuring Risk Preferences

- Holt and Laury (AER 2002)
- (See Handout for the 10 decisions)
- What would you choose?
- Sorry, I don't have US dollars to pay you...
- Session 1: Real 1x (Baseline)
- Session 2: Hypothetical 20x (or 50x, 90x)
- Session 3: Real 20x (or 50x, 90x)
- Session 4: Real 1x

Real vs. Real High Stakes (20x, ...)

Figure 2. Proportion of Safe Choices in Each Decision: Data Averages and Predictions

Average Number of Safe Choice: Order and Incentive Effects

Experiment	Incentives	1x	x 20x 50x	x 90x
Holt and			(6.0) 6.8	7.2
Laury (2002) 208 subjects			(4.9) 5.1	
Harrison et al. (2005)	Real 5.36.4			
178 subjects	6.0			Between
Holt and Laury (2005) 168-subjects		5.7	6.7 Subject	
	Hypothetical 5.6 5.7			

Real vs. Hypothetical High Stakes

Risk Aversion at Very High Stakes

Lottery A	Lottery B
$\$ 200$ if throw of die is 1-9	$\$ 336.5$ if throw of die is 1-9
$\$ 160$ if throw of die is 10	$\$ 9$ if throw of die is 10
Chosen by 38\%	Chosen by 62\%

- Even though Lottery B gave $\$ 100$ more in expected value, 38% still chose Lottery A!

Order and Incentive Effects

- Participants are risk averse
- Risk aversion increases with "real" higher payoffs
- High hypothetical payoffs are misleading
- Demographics?
- High income people slightly less risk averse
- Women are more risk averse ONLY FOR 1x

Follow-up Studies

- Harrison, Johnson, McInnes, Rutstrom (AER05)
- Harrison, Lau and Rutstrom (SJE 2005)
- Representative sample of Denmark (~16x)
- Denes are risk averse ($r=0.67$)
- Middle-age and educated are less risk averse
- Dohmen, Falk, Huffman, Sunde, Schupp, Wagner (mimeo 2005)
- Large German survey: men, youth, tall, educated are less risk aversion

Tanaka, Camerer, Nguyen (2007)

- See handout for 3 set of decisions
- Student Presentation:
- Tanaka, Camerer and Nguyen (2007), "Risk and time preferences: Experimental and household data from Vietnam," revised and resubmitted to the American Economic Review.

Preference Reversals

- A: When will you quit smoking?
- B: Tomorrow!
- The next day,
- A: When will you quit smoking?
- B: Tomorrow!
- A: But you said that yesterday...
- Tomorrow Never Dies

Prospect Theory Preferences

- Prospect Theory
- Risk Aversion, Loss Aversion
- Overweighting Low Probabilities
- 1-Parameter Example (Prelec ECMA98):
$U(x, p ; y, q)=\left\{\begin{array}{cc}v(y)+\pi(p)(v(x)-v(y)) & \text { if } x y>0 \\ \pi(p) v(x)+\pi(q) v(y) & \text { if } x y<0\end{array}\right.$
$v(x)=\left\{\begin{array}{cl}x^{\alpha} & \text { for } x>0 \\ -\lambda\left(-x^{\alpha}\right) & \text { for } x<0\end{array}\right.$ and $\pi(p)=e^{-(-\ln p)^{\alpha}}$

Time Preferences

- Discounting the Future
- Exponential: Dynamic Programming

$$
U\left(c_{1}, \ldots, c_{n}, \ldots\right)=u\left(c_{0}\right)+\sum_{k=1}^{\infty} \delta^{k} \cdot u\left(c_{k}\right)
$$

- Hyperbolic Discounting
$U\left(c_{1}, \ldots, c_{n}, \ldots\right)=u\left(c_{0}\right)+\beta \sum_{k=1}^{\infty} \delta^{k} \cdot u\left(c_{k}\right)$

Hyperbolic Discounting

- Student Presentation
- McClure, Laibson, Loewenstein and Cohen (2004), "Separate Neural Systems
Value Immediate and Delayed Monetary
Rewards" Science 306, October 152004

Hyperbolic Discounting Follow-up

- McClure, Ericson, Laibson, Loewenstein, and Cohen (2007) "Time Discounting for Primary Rewards." Journal of Neuroscience, 27: 5796-5804.
- Now or 10-30 minutes later
- Immediate "Juice" reward in the scanner - How does the results change?
- At what age do children develop into nonhyperbolic discounting?

