

Dominance

- Do people obey dominance?
 - Looking both sides to cross a 1-way street
 - "If you can see this, I $\underline{can't}$ see you."
 - p-Beauty Contest behavior (guess above 67)
- Will you bet on others obeying dominance?
 Workers respond to incentives rationally
 - Companies don't use "optimal" contracts
- SOPH: Knowing other's steps of reasoning

Hierarchy of Iterated Reasoning

- D0: Strict dominance,
- D1: Belief that others obey dominance,
- D2: Belief that others believe you'll obey dominance, ...
- Vince Crawford (AER co-editor):

 on Level-k: I'll treat any student for dinner at a conference if s/he can show an example of "4 levels of reasoning" in history or literature

1)	(R, 1)	(R, r)	L	r/R	Of pairs	$\mathbf{D}(\mathbf{r}\mathbf{D})$
(, 3)	2.00 A 100 MD				Or pairs	1(11)
· · · ·	(3, 4.75)	(10.5)	0.66	0.83	35	0.97
•)	(\cdot, \cdot)	(*, *)	0.65	1.00	31	0.85
•)		(\cdot, \cdot)	0.20	1.00	25	0.57
•)	(•,3)	(\cdot, \cdot)	0.47	1.00	32	0.97
6)	(\cdot, \cdot)	(*, *)	0.86	1.00	21	0.97
5)	(5, 9.75)	(• , 10)	0.31	1.00	26	0.95
, 18) ((18, 28.5)	(60, 30)	0.67	1.00	30	0.97
	•) •) 6) 5) 18) () (·, ·)) (·, 3) 6) (·, ·) 5) (5, 9.75) 18) (18, 28.5) re the same as to be same as to	$\begin{array}{c} \cdot \\ \cdot $	·) (·, ·) (·, ·) 0.20 ·) (·, 3) (·, ·) 0.47 (·) (·, ·) (·, ·) 0.86 () (·, ·) (·, ·) 0.31 18) (18, 28.5) (60, 30) 0.67 e the same as those in the baseline	·) (·, ·) (·, ·) 0.20 1.00 ·) (·, 3) (·, ·) 0.47 1.00 6) (·, ·) (·, ·) 0.86 1.00 5) (5, 9.75) (·, 10) 0.31 1.00 18) (18, 28.5) (60, 30) 0.67 1.00 e the same as those in the baseline case. 1.00 1.00 1.00	·) (·, ·) (·, ·) 0.20 1.00 25 ·) (·, 3) (·, ·) 0.47 1.00 32 (·) (·, ·) (·, ·) 0.86 1.00 21 5) (·, 5.75) (·, ·10) 0.31 1.00 26 18) (18, 28.5) (60, 30) 0.67 1.00 30 e the same as those in the baseline case.

 Jacob C Tal 	Goeree	e and C	harles: Holt's c	Holt (PNAS ´ ireat gam	1999) es	
Condition	Number	Threshold		Payoffs		Frequ	ency of
	pairs	$p(\mathbf{r}/\mathbf{R})$	(L)	(R, I)	(R , r)	L	r/R
Baseline 1	25	0.33	(70,60)	(60,10)	(90,50)	0.12	1.00
Lower assurance	25	0.33	(70,60)	(60,48)	(90,50)	0.32	0.53
Baseline 2	15	0.85	(80,50)	(20,10)	(90,70)	0.13	1.00
Lower assurance	25	0.85	(80,50)	(20,68)	(90,70)	0.52	0.75
Very low assurance	25	0.85	(400,250)	(100, 348)	(450,350)	0.80	0.80

tegic Form vs	. Seque	ential Fo	rm
Games 1N	A and 1S	of Schotter	et al.
	Pla	yer 2	Actual
Player 1	1	r	frequency
Normal form (1M)			
L	4, 4	4, 4	(0.57)
R	0, 1	6, 3	(0.43)
Frequency	(0.20)	(0.80)	
Sequential form			
L	4, 4		(0.08)
	1	r	
R	0, 1	6, 3	(0.92)
Frequency	(0.02)	(0.98)	

		Cent	ipe	ede	e G	am	e			
	Рі	ROPORTION OF	T Observ	ABLE I	IA at Each	TERMIN	ial Nod	E		
		Session	N	f_1	f_2	f_3	f4	fs	f ₆	f ₇
	1	(PCC)	100	.06	.26	.44	.20	.04		
Four	2	(PCC)	81	.10	.38	.40	.11	.01		
Move	3	(CIT)	100	.06	.43	.28	.14	.09		
	Total	1-3	281	.071	.356	.370	.153	.049		
High Payoff	4	(High-CIT)	100	.150	.370	.320	.110	.050		
	5	(CIT)	100	.02	.09	.39	.28	.20	.01	.01
Six	6	(PCC)	81	.00	.02	.04	.46	.35	.11	.02
Move	7	(PCC)	100	.00	.07	.14	.43	.23	.12	.01
	Total	5-7	281	.007	.064	.199	.384	.253	.078	.01

	Ce	entij		e Ga	ame	;	
	Impli	ed Take Pro	BABILITIES FO	R THE CENTI	PEDE GAME		
	Session	<i>p</i> ₁	<i>p</i> ₂	P3	P4	<i>P</i> 5	<i>P</i> 6
	1 (PCC)	.06 (100)	.28 (94)	.65 (68)	.83		
Four Move	2 (PCC)	.10 (81)	.42 (73)	.76 (42)	.90 (10)		
	3 (CIT)	.06 (100)	.46 (94)	.55 (51)	.61 (23)		
	Total 1-3	.07 (281)	.38 (261)	.65 (161)	.75 (57)		
High Payoff	4 (CIT)	.15 (100)	.44 (85)	.67 (48)	.69 (16)		
	5 (CIT)	.02	.09	.44	.56	.91	.50
Six Move	6 (PCC)	.00 (81)	.02 (81)	.04 (79)	.49 (76)	.72 (39)	.82
	7 (PCC)	.00 (100)	.07 (100)	.15 (93)	.54 (79)	.64 (36)	.92 (13)
	Total 5-7	.01	.06	.21	.53	.73	.85

			Cumulat	TABLE IVE OUTCO $(F_i = \Sigma)$	E IIIA DME FREQ	UENCIES			
Treatment	Game	N	<i>F</i> 1		F ₃	F4	F5	F ₆	F7
Four Move	1-5 6-10	145 136	.062 .081	.365 .493	.724 .875	.924 .978	1.00 1.00		
Six Move	1-5	145 136	.000	.055	.227	.558	.889 927	.979	1.000

			•				
			TABLE	IIB			
Con	- Provide an E	IMP	LIED TAKE PR	OBABILITIES		C.	
	PARISON OF E	ARLY VERSUS	LATE PLAYS	IN THE LOW F	AYOFF CENT	IPEDE GAME	s
Treatment	Game	<i>p</i> ₁	<i>P</i> ₂	p ₃ .	P4	<i>p</i> ₅	p
Four	1-5	.06	.32	.57	.75		
Move		(145)	(136)	(92)	(40)		
	6-10	.08	.49	.75	.82		
		(136)	(125)	(69)	(17)		
		.00	.06	.18	.43	.75	.8
Four	1-5		(145)	(137)	(112)	(64)	(16
Four Move	1-5	(145)	(145)				
Four Move	1-5 6-10	(145) .01	.07	.25	.65	.70	.9

ſ

Centipede Game

- What theory can explain this?
- Altruistic Types (7%): Prefer to Pass
- Normal Types:
 - Mimic altruistic types up to a point (gain more)
- Unraveling: error rate shrinks over time

Centipede Game

- Selfish players sometimes pass, to mimic an altruist. By imitating an altruist one might lure an opponent into passing at the next move, thereby raising one's final payoff in the game.
- The amount of imitation in equilibrium depends directly on the beliefs about the likelihood (1-q) of a randomly selected player being an altruist. The more likely players believe there are altruists in the population, the more imitation there is.

Centipede Game: Follow-ups

- Fey, McKelvey and Palfrey (IJGT 1996)

 Use constant-sum to kill social preferences
 Take 50% at 1st, 80% at 2nd
- Nagel and Tang (JMathPsych 1998)
- Don't know other's choice if you took first
 Take about half way
- Rapoport et al. (GEB 2003)
 - 3-person & high stakes: Many take immediately
 - CH can explain this (but not QRE) see theory

Mechanism Design

- Glazer and Rosenthal (Economtrica 1992)
 - Comment: AM mechanism requires more steps of iterated deletion of dominated strategies
- Abreu & Matsushima (Econometrica 1992)
 - Respond: "[Our] gut instinct is that our mechanism will not fare poorly in terms of the essential feature of its construction, that is, the significant multiplicative effect of 'fines.""
- This invites an experiment!

Dirty Face Game

- Three ladies, A, B, C, in a railway carriage all have dirty faces and are all laughing. It sudden flashes on A: why doesn't B realize C is laughing at her? Heavens! *I* must be laughable.
 - Littlewood (1953), "A Mathematician's Miscellany
- Requires A to think that B is rational enough to draw inference from C

I	Dirty Fac	e Game)
	_	Ту	pe
		Х	0
Proba	ability	0.8	0.2
Action	Up	\$0	\$0
Action	Down	\$1	-\$5
4.1.4	V		

Dirty Face Game

- Case XX First round:
- No inference (since at least one is type X, but the other guy is type X) → Both choose Up
- Case XX Second round:
- Seeing UU in first
 - the other is not sure about his type
 - He must see me being type X
- I must be Type X \rightarrow Both choose Down

Dirty Face Game

	_	Tria	al 1	Tria	al 2
	_	ХО	XX	XO	XX
Bound	UU	0	7*	1	7*
	DU	3*	3	4*	1
I	DD	0	0	0	0
Round	UU	-	1	-	2
2	DU	-	5	-	2
(after	DD	-	1*	-	3*
UU)	Other		-	1	-

Dirty Face Game Results: 87% rational in XO, but only 53% in 2nd round of XX Significance: Upper bound of iterative reasoning Caltech students still don't do 2 steps

- Choices reveal limited reasoning, not pure cooperativeness
- More iteration is better here...

Initial Response and Equilibration

- Price Competition

 Capra, Goeree, Gomez and Holt (IER 2002)
- Traveler's Dilemma

 Capra, Goeree, Gomez and Holt (AER 1999)
- p-Beauty Contest
 - Nagel (AER 1995)
 - Camerer, Ho, Weigelt (AER 1998)

Traveler's Dilemma Capra, Goeree, Gomez & Holt (AER 1999) Two travelers state claim p₁ and p₂: 80~200 Airline awards both the minimum claim, but reward R to the one who stated the lower claim penalize the other by R Unique NE: race to the bottom → lowest claim Like price competition game or beauty contest

p-Beauty Contest

- Each of *N* players choose x_i from [0,100]
- Target is p*(average of x_i)
- Closest x_i wins fixed prize
- (67,100] violates 1st order dominance
- (45, 67] obeys 1 step (not 2) of dominance
- Nagel (AER 1995): BGT, Figure 5.1b
- Ho, Camerer and Weigelt (AER 1998) - BGT, Figure 1.3, 5.1

p-Beauty Contest

• RESULT 1:

First-period choices are far from equilibrium, and centered near the interval midpoint. Choices converge toward the equilibrium point over time.

• RESULT 2:

On average, choices are closer to the equilibrium point for games with finite thresholds, and for games with p further from 1.

• RESULT 3:

Choices are closer to equilibrium for large (7person) groups than for small (3-person) groups.

• RESULT 4:

Choices by [cross-game] experienced subjects are no different than choices by inexperienced subjects in the first round, but converge faster to equilibrium.

					JUL		
TABLE 2—FREQUENCIES OF LEVELS OF ITERATED DOMINANCE OVER ROUND IN FT AND IT GAMES WITH VARVING <i>p</i> -VALUES							
Games/Round	1-2	3-4	5-6	7-8	9-10	Total	
FT(1.3, n)							
R(0)	44	27	14	14	11	110	
B(1)	102	18	12	10	4	146	
R(2)	101	70	49	22	7	249	
Equilibrium Play	33	165	205	234	258	895	
FT(1, 1, n)							
R(0)	12	9	10	7	13	51	
R(1)	9	2	4	2	3	20	
R(2)	14	4	2	1	1	22	
R(3)	27	7	5	4	2	45	
R(4)	96	24	1	6	4	131	
R(5)	65	59	13	7	11	155	
R(6) - R(10)	42	103	118	76	72	411	
Equilibrium Play	9	66	121	171	168	535	
IT(0.7. n)							
R(0)	42	11	13	16	15	97	
R(1)	65	21	5	7	3	101	
R(2)	53	30	14	8	12	117	
R(3)	35	53	37	21	21	167	
R(4)	39	50	44	47	41	221	
R(5)	13	43	35	36	32	159	
R(6)-R(10)	25	71	108	102	91	397	
>R(11)	2	1	12	18	25	58	
Equilibrium Play	6	0	12	25	40	83	
H(0.9, n)					-		
R(0)	12	3	4	2	7	28	
R(1)	7	2	1	0	1	11	
R(2)	23	4	3	2	1	33	
R(3)	17	12	1	0	2	32	
R(4)	33	18	10	5	3	69	
R(5)	14	21	12	6	3	56	
R(6)-R(10)	117	142	100	80	60	499	
>R(11)	47	69	136	162	175	589	
Equilibrium Play	4	3	7	17	22	53	

Parameter	Out (groups o	data of 3 or 7)	Nagel' (groups o	s data f 16–18)
estimates	IT(p, n)	FT(p, n)	IT(0.5, n)	IT(2/3, n)
ω_0	15.93	21.72	45.83 (23.94)	28.36 (13.11
ω_1	20.74	31.46	37.50 (29.58)	34.33 (44.26)
ω_2	13.53	12.73	16.67 (40.84)	37.31 (39.34
ω_3	49.50	34.08	0.00 (5.63)	0.00 (3.28
μ	70.13	100.50	35.53 (50.00)	52.23 (50.00)
σ	28.28	26.89	22.70	14.72
ρ	1.00	1.00	0.24	1.00
-LL	1128.29	1057.28	168.48	243.95

p-Beauty Contest Robustness checks: High stakes (Fig.1.3 - small effect lowering numbers) Median vs. Mean (Nagel 99' - same) p* (Median +18): equilibrium inside Subject Pool Variation: Portfolio managers Econ PhD, Caltech undergrads Caltech Board of Trustees (CEOs) Readers of Financial Times and Expansion Experience vs. Inexperience (for the same game) Sonin (EE 2005) – Experience good only for 1st round

р- Е			est
FOR THE	ITERATED BEST-RESPO	INSE LEARNING MODELS inite-threshold ($N = 27$ inite-threshold ($N = 260$	s 111); 58)
Game		Recall period	
parameter estimates	R = 1	R = 2	R = 3
IT(p, n)			
α_0	0.2878	0.3132	0.2850
α,	0.7122	0.6868	0.7150
α_2	0.0000	0.0000	0.0000
α_3	0.0000	0.0000	0.0000
β.	0.962	1.464	1.414
β_2		-0.464	0.197
β_3			-0.573
w(0)	50.97	45.27	44 87
w(-1)	- 5151	37.03	48.61
w(-2)			41.85
a	38.66	30.122	41.08
v	-0.118	-0.133	-0.125
p	0.000	0.000	0.000
LL.	-2317.94	-2242.49	-2098.70
a.2		150.90	287 58

	FOR THE	TABLE 4—MAXIMUM-LIKELIHOOD ESTIMATES AND LOG-LIKELIHOODS FOR THE ITERATED BEST-RESPONSE LEARNING MODELS						
	Game parameter estimates	Infinite-threshold ($N = 2711$); Finite-threshold ($N = 2668$)						
		Recall period						
		R = 1	R = 2	<i>R</i> = 3				
	FT(p, n)							
	α_0	0.1185	0.1195	0.1135				
	α_1	0.6771	0.6801	0.6771				
	α_2	0.2044	0.2004	0.2094				
	α_3	0.0000	0.0000	0.0000				
	β_1	1.027	0.970	0.913				
	β_2	utteat	0.060	0.059				
	β_3	arrest.	mann	0.060				
	w(0)	149.08	148.13	143.657				
	w(-1)		154.64	222.159				
	w(-2)	-	-	224.626				
	σ	30.52	29.73	29.954				
	v	-0.012	-0.008	-0.008				
	p	0.000	0.000	0.000				
		110.75	107.00	125.02				

	Leve	el-k T	heor	У	
		TABLE I	v	-	
PARAMETER E	STIMATES ANI	CONFIDENCE	INTERVALS I Types	FOR MIXTURE	Mode
	Estimate	Std. Dev.	95 percent	conf. int.	
7 1	0.2177	0.0425	0.1621	0.3055	
μ2	0.4611	0.0616	0.2014 [0.2360	0.8567 0.8567]	
72	3.0785	0.5743	1.9029 [2.5631	4.9672 5.0000]	
73	4.9933	0.9357	1.9964	5.0000	
μ4	0.0624	0.0063	0.0527	0.0774	
e4 74	0.4411 0.3326	0.0773 0.0549	0.2983 0.2433	0.5882 0.4591	
α_0	0.1749	0.0587	0.0675	0.3047	
α_1	0.2072	0.0575	0.1041	0.3298	
a2	0.0207	0.0202	0.0000	0.0625	
a 3	0.1666	0.0602	0.0600	0.2957	
α_4	0.4306	0.0782	0.2810	0.5723	
L	-442.727				

Level-k Theory

- Results 1: Consistency of Strategies with Iterated Dominance
- B, OB: 90%, 65%, 15% equilibrium play - For Equilibria requiring 1, 2, 3 levels of ID
- TS: 90-100% equilibrium play – For all levels

118

• Game-theoretic reasoning is not computationally difficult, but unnatural.

Level-k Theory							
Result 2: Estimate Subject Decision Rule							
Rule	E(u)	Choice (%)	Choice+Lookup (%)				
Altruistic	17.11	8.9	2.2				
Pessimistic	20.93	0	4.5				
Naïve	21.38	22.7	44.8				
Optimistic	21.38	0	2.2				
L2	24.87	44.2	44.1				
D1	24.13	19.5	0				
D2	23.95	0	0				
Equilibrium	24.19	5.2	0				
Sophisticated	24.93	0	2.2				

Level-k Theory Result 3: Information Search Patterns							
Subject /	t own p	ayoff	↔ other payoff				
Rule	Predicted	Actual	Predicted	Actual			
TS (Equil.)	>31	63.3	>31	69.3			
Equilibrium	>31	21.5	>31	79.0			
Naïve/Opt.	<31	21.1	-	48.3			
Altruistic	<31	21.1	-	60.0			
L2	>31	39.4	=31	30.3			
D1	>31	28.3	>31	61.7			

Level-k Theory Result 3: Information Search Patterns Occurrence (weak requirement) All necessary lookups exist somewhere Adjacency (strong requirement) Payoffs compared by rule occur next to each other H-M-L: % of Adjacency | 100% occurrence

Level-k Theory

• Result 3: Information Search Patterns

Treatment (# subjects)	Altruistic J = H,M,L,0	Pessimistic j = H,M,L,0	Naïce j = H,M,L,0	Optimistic j = A,0	L2 j = H,M,L,0	D1 j = H,M,L,0	D2 j = H,M,L,0	Equilibrium j = H,M,L,0	Sophisticate j = H,M,L
TS (12) Baseline (45)	3,10,50,27 14,11,51,24	44,7,36,13 74,2,11,14	83,2,0,15 78,4,4,14	86,14 85,15	76,2,0,22 67,14,5,14	92,3,1,5 52,19,15,14	92,3,1,5 50,19,15,14	96,1,1,3 42,23,19,16	75,1,1,2
Altruistic (2)	78,6,11,6	56,8,33,3	53,3,42,3	97,3	47,8,39,6	36,6,56,3	33,8,56,3	31,11,56,3	28,14,56
Pessimistic (0)	_,_,_,_	_,_,_,_			_,_,_,_	_,_,_,_	_,_,_,_	_,_,_,_	_,_,_,
Naive / Optim. (11)	9,5,53,33	85,1,9,5	89,5,3,4	96,4	42,24,3,31	45,22,20,13	43,18,23,16	26,24,28,23	23,23,27,
DI (7)	23,21,26,29	59,3,16,23	63,7,6,23	77,23	53,21,6,21	48,17,14,20	45,19,15,21	42,20,17,21	38,14,21,
Equilibrium (2)	6.8.86.0	100.0.0.0	97.3.0.0	, 100.0	64.36.0.0	69.17.14.0	67.19.14.0	56.25.19.0	53.19.28
Sophisticated (0)				_,_					

(Poisson) Cognitive Hierarchy

- Camerer, Ho and Chong (QJE 2004)
- Frequency of level-k thinkers is f(k/τ)
 τ = mean number of thinking steps
- Level-0: choose randomly or use heuristics
- Level-k thinkers use k steps of thinking BR to a mixture of lower-step thinkers

 Belief about others is Truncated Poisson
- Easy to compute; Explains many data

118

-

Conclusion

- Do you obey dominance?
- Would you count on others obeying dominance?
- Limit of Strategic Thinking: 2-3 steps
- Theory (for initial responses)
 - Level-k Types: Stahl-Wilson95, CGCB01
 - Cognitive Hierarchy: CHC04

