Bargaining Joseph Tao-yi Wang 4/3/2008

Bargaining

- Bargaining 討價還價
 - The process by which economic agents agree on the terms of a deal
- Common even in "competitive" markets
 - The "pit market" in NYSE/market experiments
 - Edgeworth Box was created to show range of possible bargaining outcomes
- Have you ever bargained with someone?

Bargaining

- Nash (1950, 1951)
 - (Cooperative) Nash Bargaining Solution
 - (Non-cooperative) Nash Equilibrium
- Nash Program: NBS is NE/SPE of a game
 - Binmore, Rubinstein and Wolinsky (1986)
- References:
 - BGT, Ch. 4
 - HEE, Ch. 4
 - MGS, Ch. 23

Bargaining

- Cooperative NBS vs. Non-cooperative NE
 - Two approaches in experiments as well...
- Unstructured Bargaining Experiments
 - Free form procedure determined by players
 - More close to naturally occurring bargaining
- Structured Bargaining Experiments
 - Procedure specified by experimenter
 - Game theory makes specific predictions

Bargaining

- Negotiation Research: Bazerman et al. 00'
 - Applied psychology
 - Negotiate over numerical or categorial levels of several issues (like price or quantity)
 - Free form communication with a time deadline
 - Private point schedule (dep. on each issue)
- Results: Deals are not Pareto-efficient, affected by systematic heuristics and other cognitive variables (unrelated to the game)

Bargaining

- Why not much overlap?
 - Game theory assumes too much rationality
 - Solvable games are too simplified
 - Hard to apply game theory to Negotiation games
- But the research questions are the same!
- Like 2 traditions of experimental economics
 - Game experiments are too simplified
 - Hard to apply game theory to market experiments

Unstructured Bargaining

- Test: Nash Bargaining Solution
 - The point maximizing the product of utility gains (beyond the disagreement point)
- Only point satisfying
 - Symmetry
 - Independence of Irrelevant Alternatives
 - Independence from affine utility transformation

Unstructured Bargaining

- Roth and Malouf (1979)
- Player bargain over 100 lottery tickets
 - Binary Lottery: Induce risk neutrality
 - "Works" if compound lotteries can be reduced
- 1 ticket = 1% chance of winning fixed prize
- Equal (\$1) vs. Unequal Prize (\$1.25/\$3.75)
- Full vs. Partial (know own prize) Information
- NBS: 50-50 split

Unstructured Bargaining # of Tickets for Player 2 Info. Frac. of Money Prizes 20 25 30 35 40 Con. 45 50 Disagree. Full 0 1/1 0 1 0 1 0 20 0.00 1.25/3.75 6 3 2 2 1 1 4 0.14 0 0 Part. 0 0 0 1/1 1 14 0.06 0 0 0 0 0 3 1.25/3.75 13 0.00

Unstructured Bargaining

- Results: Agreements cluster at 50-50
 - Rare Disagreement
 - 14% Disagreement when both know inequality
 - Divide tickets equally vs. \$\$\$ payoffs equally
 - Sensitive to \$\$\$ payoffs (violate independence of affine transformation)
- Pairs settle in the final minutes (Stubbornness?)
- Follow-up: "strong reputation" trained by computers carry on to new human opponents

Unstructured Bargaining

- Mehta, Starmer and Sguden (1992)
- Nash Demand Game
 - Each state demand
 - Get their demand If sum < 10, zero otherwise.
- Focal point: Two players split 4 aces
 - 2-2: 50-50 Split
 - 1-3: Half 50-50, Half 25-75; 25% disagreement

Unstructured Bargaining

- Roth (1985): Coordination game propose 50-50 or h -(100-h) simultaneously
- MSE: $p_1 = \frac{h-50}{1.50}$

$$p_2 = \frac{h - 50}{h + 50}$$

- Disagreement rates:
 - Prediction: $0 \rightarrow 7 \rightarrow 10$ (Actual: $7 \rightarrow 18 \rightarrow 25$)
- Murnighan et al. (1988):
 - Prediction: $1 \rightarrow 19$ (Actual: constant across h)

Unstructured Bargaining

- Cause of Disagreement: Self-Serving Bias
 - "What is better for me" is "Fair"
- Loewenstein et al. 93. Babcock et al. 95. 97
 - Bargain how to settle a legal case
 - Guess what the judge would award (if disagree)
- Diff. in E(judgement) predicts disagreement
 - Vanishes if don't know roles before reading case
 - Vanishes if "first list weakness of my own case"

Structured Bargaining

- Finite Alternating-Offer Game
- Binmore, Shaked & Sutton (1985): 2 period
- 1 offers a division of 100p to 2
- If 2 rejects, makes counteroffer dividing 25p
- SPE: Offer 25-75
- Experimental Results: mode at 50-50, some 25-75 and others in between

Structured Bargaining

- Neelin, Sonnenschein and Spiegel (1988) - Economics undergrads yield different results
- Are they taught backward induction? Also,
- Binmore "YOU WOULD BE DOING US A FAVOR IF YOU SIMPLY SET OUT TO MAXIMIZE YOUR WINNINGS."
- Neelin "You would be discussing the theory this experiment is designed to test in class."

Structured Bargaining

- Social Preference or Limited Strategic Thinking?
- Johnson, Camerer, Sen & Rymon (2002), "Detecting Failures of Backward Induction: Monitoring Information Search in Sequential Bargaining," Journal of Economic Theory, 104 (1), 16-47.
- See Student Presentation...

Structured Bargaining

- Random Termination vs. Discounting
- Zwick, Rapoport and Howard (1992)
- Divide \$30 with random termination
- Continuation probabilities 0.90, 0.67, 0.17
- SPE: 14.21, 12, 4.29
 - Accepted final offers: 14.97, 14.76, 13.92
- Close to discounting results (50-50 & SPE)
 - 14.90, 14.64, 13.57

Structured Bargaining

- Fixed Delay Cost in Bargaining
 - Lost wages, profits, etc.
- The side with the lower delay cost should get almost everything
- Rapoport, Weg and Felsenthal (1990)
- Divide 30 shekels
- Fixed Cost: 0.1 vs. 2.5 or 0.2 vs. 3.0
- Strong support for SPE (BGT, Table 4.7)

Outside Option and Threat Points

- Binmore, Shaked and Sutton (1989)
- Bargain over £7; player 2 has outside options of £0, £2, or £4
 - Split-the-difference: NBS predicts dividing surplus gained beyond the threat points
 - Deal-me-out: SPE predicts change in results only when threat is credible
- BGT, Fig. 4.4: Deal-me-out wins

Incomplete Information

- · Add asymmetric information to bargaining
- · More realistic, but
 - Hard to bargain for a bigger share AND convey information at the same time
- Might need to turn down an offer to signal patience or a better outside option

Seller Make Offer to Informed Buyer

- Rapoport, Erve, and Zwick (MS 1995)
- Seller: Own item (worthless to herself)
- Buyer: Private reservation price ~ unif.[0,1]
- · Seller makes an offer each period
- Common discount factor δ

Seller Make Offer to Informed Buyer

• Unique Sequential Equilibrium:

Seller Offer:
$$p_0 = \gamma \cdot \frac{1 - \delta}{1 - \gamma \cdot \delta}, \gamma = \frac{1 - \sqrt{1 - \delta}}{\delta}$$

Subsequently: $p_t = p_0 \cdot \gamma^t$

Buyer Accepts if $p_t \le v \cdot \frac{1 - \delta}{1 - \gamma \cdot \delta}$

Seller Make Offer to Informed Buyer

- Complicate Strategy: Depend on δ
 - Price discriminate high/low-value buyers
 - Price declines slow enough so high-value buyers will not want to wait
- Can subjects get these in experiments?
 - Different δ : H (0.90), M (0.67), L (0.33)
 - Opening p_0 : H (0.24), M (0.36), L (0.45)
 - Discount γ : H (0.76), M (0.68), L (0.55)

Seller Make Offer to Informed Buyer

- Can subjects get these in experiments?
 - Different δ : H (0.90), M (0.67), L (0.33)
 - Opening p₀: H (0.24), M (0.36), L (0.45)
 - Discount γ : H (0.76), M (0.68), L (0.55)
- Buyers accept the 1st or 2nd offer below v

 Accept offers too soon
- Sellers ask for higher prices (than equil.)
 - But discount γ : H (0.81), M (0.68), L (0.55)

Strikes and 1-Sided Information

- Forsythe, Kennan and Sopher (AER 1991)
- Only Informed bargainer I sees pie size
 - Either large (π $_{g}$) or small (π $_{b}$)
- Free form bargaining
- Uninformed U can strike to shrink pie by $\,\gamma\,$
- Can we predict what happens?

Strikes and 1-Sided Information

- Myerson (1979): Revelation Principle
 - I announces true state
 - U strikes to shrink pie by γ_g or γ_b
 - I gives U (based on true state) x_o or x_b
- IC requires:

$$(\gamma_g - \gamma_h)\pi_h \le x_g - x_h \le (\gamma_g - \gamma_h)\pi_g$$

Strikes and 1-Sided Information

• Interim Incentive Efficiency requires:

$$\gamma_g = 1, x_g - x_b = (1 - \gamma_b)\pi_g$$

- Strike ($\gamma_b < l$) if and only if $p\pi_g > \pi_b$
- Deriving this is complicated...
- Could ANY subject get close to this?

Strikes and 1-Sided Information

- Random Dictator (RD) Axiom:
 - Agree fair mix between each being dictator to propose mechanism
- Then

$$\gamma_g = 1, x_g = \frac{\pi_g}{2}, \gamma_b = \frac{1}{2}, x_b = 0 \text{ when } p\pi_g > \pi_b$$

$$\gamma_g = 1, x_g = \frac{\pi_b}{2}, \gamma_b = 1, x_b = \frac{\pi_b}{2} \text{ when } p\pi_g < \pi_b$$

Strikes and 1-Sided Information

- This is a win-win experiment:
 - Success if theory predictions are close
 - If not, will point to which assumption fails
- Forsythe et al. (AER 1995):
 - 10 minute sessions; written messages
- Is Myerson (1979) confirmed?
 - Surprisingly yes, though not perfect...

Strike Condition Off $p\pi_g < \pi_b$									
Game	ame p State π π_{U} π_{I} total %Strike								
111	III 0.5	-					_		
111		aver.	2.50	1.50	1.80	3.29	6.0		
		pred.	3.50	1.40	2.10	3.50	0.0		
137	0.25 aver. pred.								
IV		aver.	2.50	1.21	2.04	3.24	7.4		
		pred.	3.50	1.20	2.30	3.50	0.0		

Strike Condition Off $p\pi_g < \pi_b$									
Game	Game p State π π_{U} π_{I} total %Strike								
		b	2.80	1.47	1.18	2.66	5.2		
111	0.5	g	4.20	1.52	2.41	3.93	6.5		
'111	0.5	aver.	3.50	1.50	1.80	3.29	6.0		
		pred.		1.40	2.10	3.50	0.0		
		b	2.40	1.08	1.04	2.12	11.8		
IV	0.25	g	6.80	1.58	5.03	6.61	2.9		
1 10		aver.	2.50	1.21	2.04	3.24	7.4		
		pred.	3.50	1.20	2.30	3.50	0.0		

Strike Condition On $p\pi_g > \pi_b$										
Game	ame p State π π_{U} π_{I} total %Strike									
I	0.5	-								
		aver.	3.50	1.05	2.00	3.05	13.0			
		pred.		1.50	1.75	3.25	7.1			
II	0.75	-								
	0.75	aver.	3.50	1.41	1.76	3.18	9.3			
		pred.	3.30	1.46	1.75	3.21	8.3			

Strike Condition On $p\pi_g > \pi_b$										
Game	Game p State π $\pi_{\rm U}$ $\pi_{\rm I}$ total %Strike									
		b	1.00	0.31	0.30	0.61	39.0			
I	0.5	g	6.00	1.78	3.70	5.48	8.7			
1	0.3	aver.	3.50	1.05	2.00	3.05	13.0			
		pred.		1.50	1.75	3.25	7.1			
		b	2.30	1.06	0.84	1.90	17.2			
II	0.75	0.75	g	3.90	1.53	2.07	3.59	7.9		
"		aver.	3.50	1.41	1.76	3.18	9.3			
		pred.	3.30	1.46	1.75	3.21	8.3			

Sealed-Bid in Bilateral Bargaining

- Both buyers and sellers have private info.
- Sealed-Bid Mechanism
 - Both write down a price
 - Trade at the average if $p_b > p_s$
 - Call Market: Many buyers vs. many sellers
- Two-Person Sealed-Bid Mechanism
 - One form of bilateral bargaining

Sealed-Bid in Bilateral Bargaining

- Two-Person Sealed-Bid Mechanism
- Buyer Value $V \sim \text{uniform}[0,100]$
- Seller Cost $C \sim \text{uniform}[0,100]$
- Piecewise-linear equilibrium: (not unique)
 - Chatterjee and Samuelson (1983)

$$p_b = \begin{cases} V & \text{if } V < 25\\ \frac{25}{3} + \frac{2}{3}V & \text{if } V \ge 25 \end{cases} \quad p_s = \begin{cases} 25 + \frac{2}{3}C & \text{if } C < 25\\ C & \text{if } C \ge 75 \end{cases}$$

- This equilibrium maximizes ex ante gains
- Myerson & Satterthwaite (1983)

Sealed-Bid in Bilateral Bargaining

- Radner and Schotter (JET 1989): 8 sessions
- 1, 2, 8: Baseline as above
- 3: Trade at price (v + c + 50) / 3 if v > c+25
 Should bid their values v=V, c=C
- 4: Price = v, (Buyers should bid v=V/2)
- 5,6: Alternative distribution for more learning
 Distribution w/ more trade (for learning): m=0.438
- 7: Face-to-face bargaining

Est. Buyer Bid Function Slope								
	Ве	low cut	off	Above cutoff				
Session	β	β _hat	T-stat	β	β _hat	T-stat		
1	1	1.00	(0.01)	0.67	0.85*	(4.14)		
2	1	0.91	(-0.52)	0.67	1.06	(1.28)		
8	1	0.91	(-0.14)	0.67	0.80*	(2.32)		
3	1	0.92	(-0.08)	1	0.73*	(-2.64)		
4	0.5	0.55	(0.66)	0.5	0.58*	(2.32)		
5	1	0.80*	(-4.17)	0.438	0.50	(1.12)		
6(-20)	1	0.85	(-1.40)	0.438	0.40	(-0.56)		
6(21-)	1	_~ 1.11	(0.70)	0.438	0.32	(-1.55)		

Est. Seller Bid Function Slope Below cutoff Above cutoff									
Session	β	β _hat	T-stat	β	β _hat	T-stat			
1	0.67	0.58	(-1.38)	1	0.97	(-0.32)			
2	0.67	0.74	(1.28)	1	1.07	(0.14)			
8	0.67	0.75	(1.65)	1	1.07	(0.17)			
3	1	1.06	(1.04)	1	0.67	(-0.58)			
5	0.438	0.48	(0.87)	1	1.00	(0.60)			
6(-20)	0.438	0.57*	(2.16)	1	0.97	(-0.79)			
6(21-)	0.438	0.52	(1.20)	1	0.95	(-0.69)			
7.4		~		-		_			

Sealed-Bid in Bilateral Bargaining

- Face-to-face yields efficiency 110%
 Some truthfully reveal; others don't
- Radner and Schotter (1989, p.210),
- "The success of the face-to-face mechanism, if replicated, might lead to a halt in the search for better ways to structure bargaining in situations of incomplete information. It would create, however, a need for a theory of such structured bargaining in order to enable us to understand why the mechanism is so successful."

Sealed-Bid in Bilateral Bargaining

- Follow-up Studies:
- Schotter, Snyder and Zheng (GEB 2000)
 Add agents
- Rapoport and Fuller (1995)
 - Strategy method; asymmetric value dist.
- Daniel, Seale and Rapoport (1998)
 - Asymmetric value distribution (20 vs. 200)
- Rapoport, Daniel and Seale (1998)
 - Flip buyer-seller asymmetry; fixed pairing

Communication vs. Sealed-Bid

- Valley et al. (GEB 2002): Communication
- Buyer/Seller Values/Costs ~ uniform[0, \$50]
 - Bargain by stating bids; 7 periods; no rematch
 - Half had no feedback
- No communication: Sealed-bid in 2 minutes
- Witten communication: Exchange messages for 13 minutes before final bid
- Face-to-face: Pre-game communication

Communication vs. Sealed-Bid

- Empirical bid function slope = 0.7 (~0.67)
- Why are there "gains of communication"?
- Slope of buyer bids against seller bids=0.6
- Buyers bid higher when seller bids higher
- Mutual bidding of values (common in students)
 - Mutual revelation of values (com. in students)
 - Coordinating on a price (40% written; 70% face)

Communication vs. Sealed-Bid

- · Coordinating on a price
 - Happens 40% in written, 70% in face-to-face
- Not truth-telling (only 1/3)
 - TT not coordinated (4% written, 8% face)
- Feel each other out; give enough surplus
 - Modal equal split of surplus
- Variance of surplus doubles (by mismatches)

Conclusion

- Unstructured Bargaining
 - Focal divisions; competing focal points
 - Self-serving bias (erased by veil of ignorance or stating weakness of own case)
- Structured Bargaining
 - Deviate toward equal splits
 - Social preference models could explain this
 - But Johnson et al. (JET 2002) suggest limited look-ahead as reason for such deviations

Conclusion

- Outside options affect bargaining divisions only if threats are credible
 - Lower fixed cost player gets everything
- Information Asymmetry: One-Sided
 - Revelation Principle + Random Dictator: Good
 - Bazaar mechanism:
 - Offers decline as theory predicts, but start too high and respond to $\,\delta\,$ wrongly
 - Buyers accept too early

Conclusion

- Bilateral Bargaining: Two-Sided
 - Sealed-bid mechanism: between truthful revelation and piecewise-linear equilibrium
- Players over-reveal values in face-to-face
 - Too honest, but "more efficient"
- Communication → agree on a single price
- Why theory does better in sealed-bid than alternative-offer bargaining?
 - Is sealed-bid cognitively more transparent?