A Window of Cognition: Eyetracking the Decision-Making Process in Graphical Beauty Contest Games

Chun-Ting Chen, Chen-Ying Huang, Joseph Tao-yi Wang

2008.6.2

- Most theories only make predictions on choices. Most experiments only verify theories by observing choices.
 - We propose a new set of games, the Graphical Beauty Contest Games.
 - Using eyetracking, we base on a Level-k model to analyze subjects' choices and lookups in these games.

- Most theories only make predictions on choices. Most experiments only verify theories by observing choices.
 - We propose a new set of games, the Graphical Beauty Contest Games.
 - Using eyetracking, we base on a Level-*k* model to analyze subjects' choices and lookups in these games.

- Since lookups are observed, our study is different from most experiments where only choices are analyzed.
- Moreover, due to the graphical nature of the games, the way lookups are used in our study has a very natural interpretation based on the sequence of best-responding of a Level-k model.

- Since lookups are observed, our study is different from most experiments where only choices are analyzed.
- Moreover, due to the graphical nature of the games, the way lookups are used in our study has a very natural interpretation based on the sequence of best-responding of a Level-k model.

Conclusion

Graphical Beauty Contest Game

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Graphical Beauty Contest Game

Conclusion

Graphical Beauty Contest Game

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Graphical Beauty Contest Game

Conclusion

Graphical Beauty Contest Game

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

L3

L2

Econometric Analysis

Conclusion

Level-k classification

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Level-k classification

Econometric Analysis

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Assumption

Lookup behavior assumption

• Lookups will follow the sequence of best-responding implied by a Level-k model.

Graphical Beauty contest Game

Econometric Analysis

Conclusion

Assumption

Level 0's Lookup behavior (central point)

Graphical Beauty contest Game

Econometric Analysis

Conclusion

Assumption

Level 1's Lookup behavior

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Graphical Beauty contest Game

Econometric Analysis

Conclusion

Assumption

Level 2's Lookup behavior

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Graphical Beauty contest Game

Econometric Analysis

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assumption

Level 3's Lookup behavior

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assumption

Lookup behavior assumption

• Lookups will follow the sequence of best-responding implied by a Level-k model.

- But we don't assume lookups will follow this precise order in time.
- We assume each lookup corresponds to a state, so that the entire sequence of lookups constitutes a state-switching process.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assumption

Lookup behavior assumption

- Lookups will follow the sequence of best-responding implied by a Level-k model.
 - But we don't assume lookups will follow this precise order in time.
 - We assume each lookup corresponds to a state, so that the entire sequence of lookups constitutes a state-switching process.

Assumption

Lookup behavior assumption

- Lookups will follow the sequence of best-responding implied by a Level-k model.
 - But we don't assume lookups will follow this precise order in time.
 - We assume each lookup corresponds to a state, so that the entire sequence of lookups constitutes a state-switching process.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assumption

State switching

Introd	

Assumption

State switching

• An empirical sequence of lookups (Round 15 of

Subject 9, who is classified as an L2)

Member A	Member B
RIGHT 2	UP 2

<u>(ロト (周)</u> (注) (注) (注) (つく)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへの

Introduction 00	Graphical Beauty contest Game	Econometric Analysis	Conclusion
Assumption			
State switch	ning		

• An empirical sequence of lookups (Round 15 of

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Subject 9, who is classified as an L2).

Econometric Analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Markov switching model

Markov switching

• State Transition Matrix

	Lower level <	Higher level	
	LO	LI'	L2
LO	0.92	0.04	0.04
Ll'	0.05	0.92	0.02
L2	0.01	0.01	0.98

Note: Subject 9's estimated State Transition Matrix

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Markov switching model

Markov Transition Matrix property

We define the *UL ratio* to see whether states transit from lower levels to higher levels.

Note: Subject 9's estimated UL ratio

Markov switching model

Markov Transition Matrix property

UL ratio

subject	adjusted type	UL ratio	
12	LI	28183.0	
8	13	13.2	
11	L3	3.5	Pocult
15	LI	3.3	Result
13	13	3.0	
6	L2	2.8	• The result
3	1.3	2.6	suggests that
14	13	2.1	states underlying
17	L3	2.0	lookups do transit
1	1.3	1.8	from lower levels
2	1.2	1.4	to higher levels.
5	L2	1.3	
9	L2	1.1	
4	L3	0.6	
10	L3	0.3	
16	L2	0.1	
7	1.0	-	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Maximum Likelihood Estimation

The classification based on lookups+Hensen's LR Test

subject	Lk*	Lk-*				adjusted type
		LO	Ll	L2	L3	
7	L2	0.067	0.035 *	-	-	LO
5	L2	0.006 *	0.005 *	-	-	L2
9	L2	0.002 *	0.017*	-	-	L2
12	L3	0.000 *	0.130	0.000 *	-	LI
15	L3	0.000 *	0.058	0.000 *	-	L3
2	L3	0.000 *	0.001 *	0.327	-	L2
6	L3	0.000 *	0.000 *	0.413	-	L2
16	L3	0.000 *	0.001 *	0.227	-	L2
1	L3	0.000 *	0.000 *	0.000 *	-	L3
3	L3	0.010 *	0.016 *	0.014 *	-	L3
4	L3	0.000 *	0.036 *	0.003 *	-	L3
8	L3	0.000 *	0.001 *	0.001 *	-	L3
10	L3	0.000 *	0.000 *	0.000 *	-	L3
11	L3	0.000 *	0.000 *	0.017 *	-	L3
13	L3	0.000 *	0.000 *	0.000 *	-	L3
14	1.3	0.000 *	0.013 *	0.000 *	-	L3
17	1.3	0.030 *	0.039 *	0.001 *	-	1.3

* indicates p-value less or equal than 0.05

Result

- 12/17 subjects can be strongly classified (p-value≤0.05).
- 5/17 subjects are adjusted to lower level-k types with second highest maximum
 - likelihood.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Maximum Likelihood Estimation

The classification based on choice+Hensen's LR Test

subject	Lk*	Lk-*			
		LO	LI	L2	L3
7	LO	-	0.105	0.143	0.100
9	LO	-	0.191	0.418	0.313
4	LI	0.172	-	0.152	0.129
10	LI	0.049*	-	0.047*	0.051
12	LI	0.050*	-	0.101	0.074
17	LI	0.083	-	0.088	0.184
2	L2	0.097	0.087	-	0.142
6	L2	0.055	0.085	-	0.141
11	L2	0.054	0.069	-	0.387
16	L2	0.045*	0.053	-	0.081
1	L3	0.061	0.070	0.081	-
3	L3	0.126	0.403	0.111	-
5	L3	0.066	0.070	0.232	-
8	L3	0.069	0.083	0.095	-
13	L3	0.053	0.111	0.098	-
14	1.3	0.052	0.221	0.064	-
15	L3	0.084	0.111	0.217	-

Result

 No subjects can be strongly classified (p-value≤0.05).

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Maximum Likelihood Estimation

Hensen's LR Test for Classification: Choices vs. Lookup

subject	Lk based on Lookups	Lk based on Choice only	H0: Choice is true H1:Lookups is true	H0: Lookups is true H1:Choice is true
1	L3	L3	-	-
2	L2	L2	-	-
3	1.3	1.3	-	-
4	L3	LI	0.036**	0.129
5	L2	L3	0.000"	0.232
6	L2	L2	-	-
7	LO	LO	-	-
8	1.3	L3	-	
9	L2	LO	0.001**	0.418
10	L3	LI	0.000**	0.051
11	1.3	L2	0.017"	0.387
12	LI	LI	-	-
13	L3	L3	-	-
14	1.3	1.3	-	-
15	L3	L3	-	-
16	L2	L2	-	-
17	1.3	LI	0.039**	0.184

** indicates p-value less or equal than 0.05; * indicates p-value less or equal than 0.1

Result

- 11/17 subjects' lookups agree with choices.
- 6/17 subjects' lookups do not agree with choices, but the classification according to lookups passes the I R test $(p-value \leq 0.05)$ that maximum likelihoods are significantly different from those estimated by choices.

< □

Conclusion

- We estimate a Markov Switching Transition Matrix from emipirical lookups.
 - 11/17 subject's lookups agree with choices.
 - when the two classifications disagree, choice data alone could not reject nearly all of the lookup-based type alternatives, while most of the choice-based type alternatives could be rejected using lookup data.

Conclusion

- We estimate a Markov Switching Transition Matrix from emipirical lookups.
- **2** 11/17 subject's lookups agree with choices.
 - when the two classifications disagree, choice data alone could not reject nearly all of the lookup-based type alternatives, while most of the choice-based type alternatives could be rejected using lookup data.

Conclusion

- We estimate a Markov Switching Transition Matrix from emipirical lookups.
- 2 11/17 subject's lookups agree with choices.
- when the two classifications disagree, choice data alone could not reject nearly all of the lookup-based type alternatives, while most of the choice-based type alternatives could be rejected using lookup data.