Midterm Assignment: An Experimental Proposal

$$
\begin{gathered}
\text { Joseph Tao-yi Wang } \\
4 / 11 / 2014
\end{gathered}
$$

Experimental Proposal

- Design and propose an experiment
- Recall the definition of an economic experiment?
- In <4 pages, answer four (design) questions:
- What is your question?
- ...that your experiment is designed to answer
- Why should we care about it?
- Is it really important? Why is this interesting?
- What is your (predicted) answer?
- How did you get there?

Why a Proposal?

- These four questions are exactly what a job candidate has to answer in 60 seconds on the Econ PhD job market...
- What is your question?
- Why should we care about it?
- What is your answer?
- How did you get there?
- NTU's education usually don't teach you how to ask a good question
- But this is what you need to do in research/life!

Where's Boundary of Experimental Economics?

- Economic Experiments is a type of Methodology in Economics (Not a "field" it applies to...)
- Like Economic Theory and Econometrics
- Just as there are micro theory, macro theory, applied micro, applied macro, there are micro experiments and macro experiments
- Most experiments you see are micro, but macro ones (see Vol. 2 Handbook chapter) are budding!
- Could be viewed as a subfield of data collection - So are Surveys and Requesting Firm-level Data

Where＇s Boundary of Experimental Economics？

－Experimental Economics applies methods of experiments on Economics．．．
—實驗經濟學是把實驗方法應用在經濟學上
－Hence，Experimental Economics is only limited by boundaries of economics
—經濟學的範圍到哪裡，實驗經濟學也到那裡
－What is the boundary of Economics？
—你覺得經濟學的範圍到哪裡？
－That＇s the range of proposals you can write．．．

Coordination協調賽局

Joseph Tao－yi Wang
 $$
4 / 11 / 2014
$$

Why is Coordination Important?

- Which Equilibrium to Select Among Many?
- This requires Coordination!
- Examples of Coordination in Daily Life:
- Language
- Trading in Markets (Liquidity)
- Industry Concentration

Why is Coordination Important?

- Equilibrium Selection in Game Theory
- Desirable Features:
- Payoff-Dominance, Risk Dominance, etc.
- Convergence via Adaptation / Learning - Weibull (1995), Fudenberg and Levine (1998)
- Empirical: Infer "Selection Principles" by putting people in experiments and observe actual behavior/outcome

Why is Coordination Important?

- Possible "Selection Principles":
- Precedent, focal, culture understanding, etc.
- Why are observations useful?
- Schelling (1960, p.164):
- One cannot, without empirical evidence, deduce what understandings can be perceived in a nonzerosum game of maneuver any more than one can prove, by purely formal deduction, that a particular joke is bound to be funny."

Why is Coordination Important?

- Can't Communication Solve This?
- Not always... (See Battle of Sexes below)
- Sometimes communication is not feasible:
- Avoiding Traffic Jams
- Speed Limits (useful because they reduce speed "variance", and hence, enhance coordination!)
- Miscommunication can have big inefficiency!

Examples of Coordination Impact

- The standard width of US railroad tracks is 4 feet and 8.5 inch Because English wagons were about 5 feet (width of two horses)
- Space Shuttle rockets are smaller than ideal since they need to be shipped back by train...
- Industries are concentrated in small areas - Silicon Valley, Hollywood, Hsin-chu Science Park
- Urban Gentrification - I want to live where others (like me) live

Examples of Coordination Impact

- Drive on the Left (or Right) side of the road - Right: Asia, Europe (Same continent!) - Left: Japan, UK, Hong Kong (all islands!)
- Sweden switched from left to right around 1900 (and at 12pm noon time!)
- What about America?
- Right: to avoid hitting someone with the whip on your right hand
- Bolivians switch to "Left" in mountainous area

3 Types of Coordination Games

- Matching Games
- Pure Coordination Game
- Games with Asymmetric Payoffs
- Battle of Sexes, Market Entry Game
- Games with Asymmetric Equilibria - Stag Hunt, Weak-Link Game
- Applications: Market Adoption and Culture

Examples of Coordination Impact

- Categorizing Products
- Where should you find Narnia? Family or Action?
- Can you find your favorite grocery at a new store?
- Common Language: Internet promotes English
- Some Koreans even get surgery to loosen their tongues, hoping to improve their pronunciation
- Key: Agreeing on something is better than not; but some coordinated choices are better.

Matching Game

－GAMES magazine（1989）
－Pick one celebrity for President，one for Vice－ President
－One person is randomly awarded prize among those who picked most popular one
－林書豪，陳偉殷，林飛帆，陳為廷，謝金燕，黄國昌，魏德聖，雞排妹，王炳忠，張安樂

Matching Game

- US Results:
- Bill Cosby (1489): successful TV show
- Lee lacocca (1155): possible US candidate
- Pee-Wee Herman (656): successful TV show
- Oprah Winfrey (437): successful TV show
- Shirley MacLaine (196): self-proclaimed reincarnate

Pure Coordination Game

- Both get 1 if pick the same; both get 0 if not
- Two pure NE, one mixed NE
- Which one will be played empirically?

Matching Game

- Mehta, Starmer and Sugden (AER 1994)
- Picking Condition (P): Just pick a strategy
- Coordinating Condition (C): Win \$1 if your partner picks the same as you do
- Difference between P and $C=$ How focal
- Choices: Years, Flowers, Dates, Numbers, Colors, Boy's name, Gender, etc.

Matching Game

Group P
 Group C

Category

Response	$\%$	Response	$\%$
1971	8.0	1990	61.1
Rose	35.2	Rose	66.7
Dec. 25	5.7	Dec. 25	44.4
7	11.4	1	40.0
Blue	38.6	Red	58.9
John	9.1	John	50.0
Him	53.4	Him	84.4

Asymmetric Players: Battle of Sexes

- 100 lottery tickets = 10% chance to win $\$ 1$ or $\$ 2$ after round
- Pure NE: $(1,2)$ and $(2,1)$
- Prefer equilibrium strategy 2
- Mixed NE: $\left(\frac{1}{4}, \frac{3}{4}\right)$ each
- Which would you pick?

Asymmetric Players: Battle of Sexes

- Cooper, DeJong, Forsythe \& Ross (AER 90')
- BOS: Baseline (MSE mismatch 62.5\%)
- BOS-300: Row player has outside option 300 - Forward induction predicts $(2,1)$
- BOS-100: Row player's outside option is 100 - Forward induction doesn't apply
- Compare BOS-100 and BOS-300 shows if "any outside option" works...

Asymmetric Players: Battle of Sexes

- Cooper, DeJong, Forsythe \& Ross (AER 90')
- BOS-1W: 1 way communication by Row
- BOS-2W: 2 way communication by both
- BOS-SEQ: Both know that Row went first, but Column doesn't know what Row did - Information set same as simultaneous move - Would a sequential move act as an coordination device?

Battle of Sexes (Last 11 Periods)

Game Outside (1,2) (2,1) Other Total Obs

$$
\begin{array}{cccccc}
\text { BOS } & - & 37_{(22 \%)} & 31_{(19 \%)} & 97(59 \%) & 165 \\
\text { BOS-300 } & 33 & 0(0 \%) & 119(90 \%) & 13(10 \%) & 165 \\
\text { BOS-100 } & 3 & 5(3 \%) & 102(63 \%) & 55(34 \%) & 165 \\
\text { BOS-1W } & - & 1_{(1 \%)} & 158(96 \%) & 6(4 \%) & 165 \\
\text { BOS-2W } & - & 49(30 \%) & 47_{(28 \%)} & 69_{(42 \%)} & 165 \\
\text { BOS-SEQ } & - & 6(4 \%) & 103(62 \%) & 56(34 \%) & 165
\end{array}
$$

Where Does Meaning Come From?

- Communication can help us coordinate
- But how did the common language for communication emerge in the first place?
- Put people in a situation of "no meaning" and see how they create it!
- Blume, DeJong, Kim \& Sprinkle (AER 98') - See also BDKS (GEB 2001) which is "better"

Evolution of Meaning

Evolution of Meaning

- Blume et al. (AER 1998)
- Game 1: Baseline as above
- Game 1NH: See only history of own match
- Game 2: Receiver can choose C (safe action) that gives $(4,4)$ regardless of $\mathrm{T} 1 / \mathrm{T} 2$
- Theory: Pooling or Separating Equilibrium

Percentage Consistent w/ Separating

Game \backslash Period	1	5	10	15	20

1st Session
Game 1
48
65
74
89
95

2nd Session
Game 1
49
72
61
89
100
Game 1NH
55
55
28
55
72
Game 2
Separating
44
Pooling
3905
00
05
94
$4 / 11 / 2014$
Joseph Tao-yi Wang Coordination

Evolution of Meaning

- Blume et al. (AER 1998)
- Game 2: Receiver can choose C (safe action) that gives $(4,4)$ regardless of T1/T2
- Game 3: "Coordinate payoffs" become $(2,7)$ so sender wants to disguise types to force receiver to choose C (safe action)
- Allowed to send 2 or 3 messages...

Results of Game 3: 2 vs. 3 messages

\# of Messages 1 1-10 $111-20 \quad 21-30$ 31-40 $41-50 \quad 51-60$

$\begin{array}{lllll}\text { 2-Separating } & 43 & 53 & 38 & 39\end{array}$

2-Pooling $\quad 33 \quad 34$		31	43	2nd Session

$\begin{array}{lllll}3-\text {-Separating } & 43 & 38 & 33 & 24\end{array}$
3-Pooling
$\begin{array}{llll}33 & 37 & 42 & 60\end{array}$
2-Separating
2-Pooling
39
$27 \quad 23$
39
48
5
22
23
25
22
24 3-Pooling 55

61
58
56
57
61
1st Session

Example of Asymmetric Payoffs

- Market Entry Game
- n players decide to enter a market with capacity C
- Payoffs declines as number of entrants increase; <0 if number > c
- Kahneman (1988): Number close to equil.
- "To a psychologist, it looks like magic."
- See BI-SAW paper by Chen et al. (2012)...

Games with Asymmetric Equilibria

Games with Asymmetric Equilibria

- Cooper et al. (AER 1990)
- CG: Baseline Stag Hunt
- CG-900: Row's outside option is 900 each
- Forward induction predicts $(2,2)$
- CG-700: ow's outside option is 700 each
- Forward induction won't work
- CG-1W: 1 way communication by Row
- CG-2W: 2 way communication by both

Stage Hunt (Last 11 Periods)

Game Outside (1,1) (2,2) Other Total Obs

CG	-	$160(97 \%)$	$0(0 \%)$	$5_{(3 \%)}$	165
CG-900	65	$2(2 \%)$	$77_{(77 \%)}$	$21_{(21 \%)}$	165
CG-700	20	$119(82 \%)$	$0(0 \%)$	$26_{(18 \%)}$	165
CG-1W	-	$26_{(16 \%)}$	$88_{(53 \%)}$	$51(31 \%)$	165
CG-2W	-	$0(0 \%)$	$150(91 \%)$	$15(9 \%)$	165

Weak-Link Games: Team Production Example

- Van Huyck, Battalio and Beil (AER 1990)
- Each of you belong to a team
- Each of you can choose effort $X=1 \sim 4$ - Spade $=4$, Heart $=3$, Diamond $=2$, Club $=1$
- Earnings depend on your own effort and the "smallest effort of your team"
- Each person has to do his/her job for the whole team project to fly
- Have you every had such a project team?

Weak-Link Games: Team Production Example

- Payoff $=60+10 * \min \left\{\mathrm{X}_{\mathrm{j}}\right\}-10 *\left(\mathrm{X}_{\mathrm{i}}-\min \left\{\mathrm{X}_{\mathrm{i}}\right\}\right)$

Team Project Payoff
Cost of Effort X

Your X
Smallest X in the team

	4	3	2	1
4	100	80	60	40
3	-	90	70	50
2	-	-	80	60
1	-	-	-	70

Weak-Link Games: Team Production Example

- What is your choice when...
- Group size $=2$?
- Group size $=3$?
- Group size $=20$?
- Can some kind of communication help coordinate everyone's effort?

