Midterm Assignment: An Experimental Proposal Joseph Tao-yi Wang 4/11/2014

Joseph Tao-yi Wang Coordination

Experimental Proposal

- Design and propose an experiment

 Recall the definition of an economic experiment?
- In <4 pages, answer four (design) questions:
- What is your question?
 - $-\ldots$ that your experiment is designed to answer
- Why should we care about it?
 Is it really important? Why is this interesting?
- What is your (predicted) answer?
- How did you get there?

Why a Proposal?

- These four questions are exactly what a job candidate has to answer in 60 seconds on the Econ PhD job market...
 - What is your question?
 - Why should we care about it?
 - What is your answer?
 - How did you get there?
- NTU's education usually don't teach you how to ask a good question
 - But this is what you need to do in research/life!

Where's Boundary of Experimental Economics?

- Economic Experiments is a type of <u>Methodology</u> in Economics (Not a "field" it applies to…)
- Like Economic Theory and Econometrics
 - Just as there are micro theory, macro theory, applied micro, applied macro, there are micro experiments and macro experiments
- Most experiments you see are micro, but macro ones (see Vol.2 Handbook chapter) are budding!
- Could be viewed as a subfield of data collection
 So are Surveys and Requesting Firm-level Data

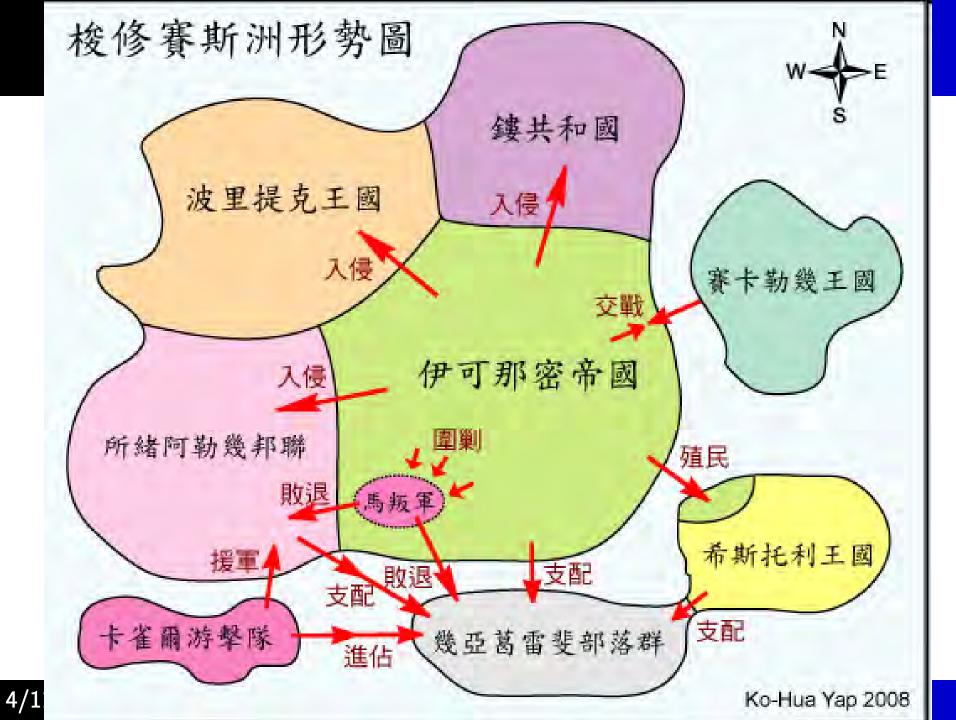
Joseph Tao-yi Wang Coordination

Where's Boundary of Experimental Economics?

• Experimental Economics applies methods of experiments on Economics...

- 實驗經濟學是把實驗方法應用在經濟學上

• Hence, Experimental Economics is only limited by boundaries of economics


-經濟學的範圍到哪裡,實驗經濟學也到那裡

• What is the boundary of Economics?

-你覺得經濟學的範圍到哪裡?

4/11/2014

- That's the range of proposals you can write...

Coordination 協調賽局

Joseph Tao-yi Wang 4/11/2014

4/11/2014

Joseph Tao-yi Wang Coordination

- Which Equilibrium to Select Among Many?
 This requires Coordination!
- Examples of Coordination in Daily Life:
 - Language

- Trading in Markets (Liquidity)
- Industry Concentration

- Equilibrium Selection in Game Theory
- Desirable Features:
 - Payoff-Dominance, Risk Dominance, etc.
- Convergence via Adaptation / Learning
 Weibull (1995), Fudenberg and Levine (1998)
- Empirical: Infer "Selection Principles" by putting people in experiments and observe actual behavior/outcome

- Possible "Selection Principles":
 - Precedent, focal, culture understanding, etc.
- Why are observations useful?
- Schelling (1960, p.164):
 - One cannot, without empirical evidence, deduce what understandings can be perceived in a nonzerosum game of maneuver any more than one can prove, by purely formal deduction, that a particular joke is bound to be funny."

- Can't Communication Solve This?
- Not always... (See Battle of Sexes below)
- Sometimes communication is not feasible:
 - Avoiding Traffic Jams

- Speed Limits (useful because they reduce speed "variance", and hence, enhance coordination!)
- Miscommunication can have big inefficiency!

Examples of Coordination Impact

- The standard width of US railroad tracks is 4 feet and 8.5 inch Because English wagons were about 5 feet (width of two horses)
 - Space Shuttle rockets are smaller than ideal since they need to be shipped back by train...
- Industries are concentrated in small areas
 Silicon Valley, Hollywood, Hsin-chu Science Park
- Urban Gentrification I want to live where others (like me) live

Examples of Coordination Impact

- Drive on the Left (or Right) side of the road
 - Right: Asia, Europe (Same continent!)
 - Left: Japan, UK, Hong Kong (all islands!)
 - Sweden switched from left to right around 1900 (and at 12pm noon time!)
- What about America?

- Right: to avoid hitting someone with the whip on your right hand
- Bolivians switch to "Left" in mountainous area

3 Types of Coordination Games

• Matching Games

4/11/2014

- Pure Coordination Game

- Games with Asymmetric Payoffs
 Battle of Sexes, Market Entry Game
- Games with Asymmetric Equilibria
 Stag Hunt, Weak-Link Game
- Applications: Market Adoption and Culture

Examples of Coordination Impact

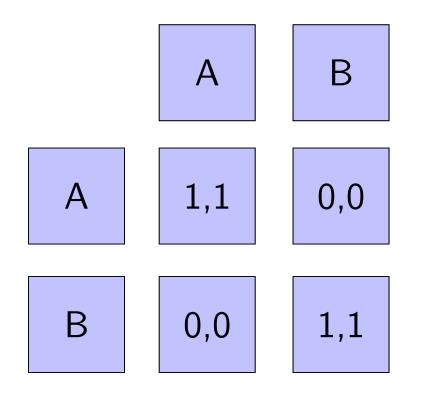
• Categorizing Products

- Where should you find Narnia? Family or Action?
- Can you find your favorite grocery at a new store?
- Common Language: Internet promotes English
 - Some Koreans even get surgery to loosen their tongues, hoping to improve their pronunciation
- Key: Agreeing on something is better than not; but some coordinated choices are better.

Matching Game

4/11/2014

- GAMES magazine (1989)
- Pick one celebrity for President, one for Vice-President
- One person is randomly awarded prize among those who picked most popular one
- 林書豪、陳偉殷、林飛帆、陳為廷、謝金燕、 黃國昌、魏德聖、雞排妹、王炳忠、張安樂


Joseph Tao-yi Wang Coordination

Matching Game

• US Results:

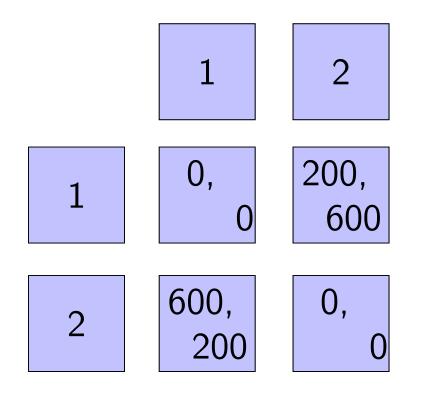
- Bill Cosby (1489): successful TV show
- Lee lacocca (1155): possible US candidate
- Pee-Wee Herman (656): successful TV show
- Oprah Winfrey (437): successful TV show
- Shirley MacLaine (196): self-proclaimed reincarnate

Pure Coordination Game

- Both get 1 if pick the same; both get 0 if not
- Two pure NE, one mixed NE
- Which one will be played empirically?

Matching Game

- Mehta, Starmer and Sugden (AER 1994)
- Picking Condition (P): Just pick a strategy
- Coordinating Condition (C): Win \$1 if your partner picks the same as you do
- Difference between P and C = How focal
- Choices: Years, Flowers, Dates, Numbers, Colors, Boy's name, Gender, etc.


Matching Game

4/11/2014

Catagony	Group	Р	Group C	
Category	Response	%	Response	%
Years	1971	8.0	1990	61.1
Flowers	Rose	35.2	Rose	66.7
Dates	Dec. 25	5.7	Dec. 25	44.4
Numbers	7	11.4	1	40.0
Colors	Blue	38.6	Red	58.9
Boys' Name	John	9.1	John	50.0
Gender	Him	53.4	Him	84.4

Joseph Tao-yi Wang Coordination

Asymmetric Players: Battle of Sexes

- 100 lottery tickets = 10% chance to win \$1 or \$2 after round
- Pure NE: (1,2) and (2,1)
 - Prefer equilibrium strategy 2
- Mixed NE: $(\frac{1}{4}, \frac{3}{4})$ each
- Which would you pick?

Asymmetric Players: Battle of Sexes

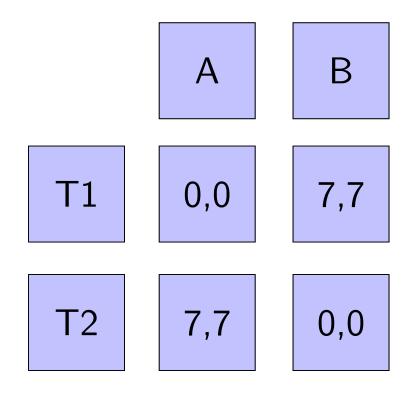
- Cooper, DeJong, Forsythe & Ross (AER 90')
- BOS: Baseline (MSE mismatch 62.5%)
- BOS-300: Row player has outside option 300
 Forward induction predicts (2,1)
- BOS-100: Row player's outside option is 100
 Forward induction doesn't apply
- Compare BOS-100 and BOS-300 shows if "any outside option" works...

Asymmetric Players: Battle of Sexes

- Cooper, DeJong, Forsythe & Ross (AER 90')
- BOS-1W: 1 way communication by Row
- BOS-2W: 2 way communication by both
- BOS-SEQ: Both know that Row went first, but Column doesn't know what Row did
 - Information set same as simultaneous move
 - Would a sequential move act as an coordination device?

Battle of Sexes (Last 11 Periods)

Game	Outside	(1,2)	(2,1)	Other	Total Obs
BOS	-	37(22%)	31(19%)	97(59%)	165
BOS-300	33	0(0%)	119(90%)	13(10%)	165
BOS-100	3	5(3%)	102(63%)	55(34%)	165
BOS-1W	-	1(1%)	158(96%)	6(4%)	165
BOS-2W	-	49(30%)	47(28%)	69(42%)	165
BOS-SEQ	-	6(4%)	103(62%)	56(34%)	165


4/11/2014 J

Joseph Tao-yi Wang Coordination

Where Does Meaning Come From?

- Communication can help us coordinate
- But how did the common language for communication emerge in the first place?
- Put people in a situation of "no meaning" and see how they create it!
- Blume, DeJong, Kim & Sprinkle (AER 98')
 See also BDKS (GEB 2001) which is "better"

Evolution of Meaning

- Blume et al. (AER 98')
- Sender has private type T1 or T2
- Sends message "*" or "#" to receiver
- Receiver chooses A or B (to coordinate type)

Evolution of Meaning

- Blume et al. (AER 1998)
- Game 1: Baseline as above
- Game 1NH: See only history of own match

- Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
- Theory: Pooling or Separating Equilibrium

Percentage Consistent w/ Separating

Game \ Period	1	5	10	15	20
1st Session					
Game 1	48	65	74	89	95
2nd Session					
Game 1	49	72	61	89	100
Game 1NH	55	55	28	55	72
Game 2					
Separating	44	88	88	88	94
Pooling	39	05	00	05	05

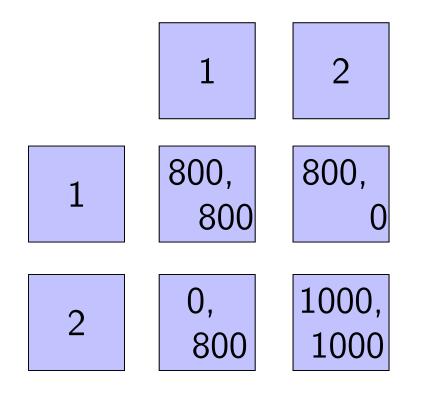
Joseph Tao-yi Wang Coordination

Evolution of Meaning

4/11/2014

- Blume et al. (AER 1998)
- Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
- Game 3: "Coordinate payoffs" become (2,7) so sender wants to disguise types to force receiver to choose C (safe action)
- Allowed to send 2 or 3 messages...

Joseph Tao-yi Wang Coordination


Results of G	Same	3: 2 v	s. 3 m	essage	es	
# of Messages	1-10	11-20	21-30	31-40	41-50	51-60
2-Separating	43	53	38	39		
2-Pooling	33	34	41	43	2nd S	ession
3-Separating	43	38	33	24		
3-Pooling	33	37	42	60		
2-Separating	39	27	23	24	24	23
2-Pooling	39	48	51	60	63	61
3-Separating	23	22	23	25	22	24
3-Pooling	55	61	58	56	57	61
					1st S	ession

Joseph Tao-yi Wang Coordination

Example of Asymmetric Payoffs

- Market Entry Game
- *n* players decide to enter a market with capacity *c*
- Payoffs declines as number of entrants increase; <0 if number > c
- Kahneman (1988): Number close to equil.
 "To a psychologist, it looks like magic."
- See BI-SAW paper by Chen et al. (2012)...

Games with Asymmetric Equilibria

- Stag Hunt: Cooper et al. (AER 1990)
- 100 lottery tickets = 10% chance to win \$1 or \$2 after round
- Pure NE: (1,1) and (2,2)
- Which would you pick?

Games with Asymmetric Equilibria

- Cooper et al. (AER 1990)
- CG: Baseline Stag Hunt

4/11/20<u>1</u>4

- CG-900: Row's outside option is 900 each
 Forward induction predicts (2,2)
- CG-700: ow's outside option is 700 each
 Forward induction won't work
- CG-1W: 1 way communication by Row
- CG-2W: 2 way communication by both

Stage Hunt (Last 11 Periods)

4/11/2014

Game	Outside	(1,1)	(2,2)	Other	Total Obs
CG	-	160(97%)	0(0%)	5 (3%)	165
CG-900	65	2(2%)	77(77%)	21(21%)	165
CG-700	20	119(82%)	0(0%)	26(18%)	165
CG-1W	-	26(16%)	88(53%)	51 (31%)	165
CG-2W	-	0(0%)	150(91%)	15(9%)	165

Joseph Tao-yi Wang Coordination

Weak-Link Games: Team Production Example

- Van Huyck, Battalio and Beil (AER 1990)
- Each of you belong to a team

- Each of you can choose effort $X=1^{4}$ - Spade = 4, Heart = 3, Diamond = 2, Club = 1
- Earnings depend on your own effort and the "smallest effort of your team"
 - Each person has to do his/her job for the whole team project to fly
- Have you every had such a project team?

Weak-Link Games: Team Production Example

• Payoff = $60 + 10 * \min\{X_j\} - 10 * (X_i - \min\{X_i\})$

Team Project Payoff

Your X —	S	Smallest X	in the tear	n
	4	3	2	1
4	100	80	60	40
3	-	90	70	50
2	-	-	80	60
1	-	-	-	70

Joseph Tao-yi Wang Coordination

Weak-Link Games: Team Production Example

- What is your choice when...
- Group size = 2?
- Group size = 3?

4/11/2014

• Group size = 20?

• Can some kind of communication help coordinate everyone's effort?