Joseph Tao-yi Wang 5/24/2013

- Bargaining 討價還價
 - The process by which economic agents agree on the terms of a deal
- Common even in "competitive" markets
 - The "pit market" in NYSE/market experiments
 - Edgeworth Box was created to show range of possible bargaining outcomes
- Have you ever bargained with someone?

- Nash (1950, 1951)
 - (Cooperative) Nash Bargaining Solution
 - (Non-cooperative) Nash Equilibrium
- Nash Program: NBS is NE/SPE of a game
 - Binmore, Rubinstein and Wolinsky (1986)
- References:
 - BGT, Ch. 4
 - HEE, Ch. 4
 - *MGS*, Ch. 23

- Cooperative NBS vs. Non-cooperative NE
 - Two approaches in experiments as well...
- Unstructured Bargaining Experiments
 - Free form procedure determined by players
 - More close to naturally occurring bargaining
- Structured Bargaining Experiments
 - Procedure specified by experimenter
 - Game theory makes specific predictions

- Negotiation Research: Bazerman et al. 00'
 - Applied psychology
 - Negotiate over numerical or categorial levels of several issues (like price or quantity)
 - Free form communication with a time deadline
 - Private point schedule (dep. on each issue)
- Results: Deals are not Pareto-efficient, affected by systematic heuristics and other cognitive variables (unrelated to the game)

- Why not much overlap?
 - Game theory assumes too much rationality
 - Solvable games are too simplified
 - Hard to apply game theory to Negotiation games
- But the research questions are the same!
- Like 2 traditions of experimental economics
 - Game experiments are too simplified
 - Hard to apply game theory to market experiments

- Test: Nash Bargaining Solution
 - The point maximizing the product of utility gains (beyond the disagreement point)
- Only point satisfying
 - Symmetry
 - Independence of Irrelevant Alternatives
 - Independence from affine utility transformation

- Roth and Malouf (1979)
- Player bargain over 100 lottery tickets
 - Binary Lottery: Induce risk neutrality
 - "Works" if compound lotteries can be reduced
- 1 ticket = 1% chance of winning fixed prize
- Equal (\$1) vs. Unequal Prize (\$1.25/\$3.75)
- Full vs. Partial (know own prize) Information
- NBS: 50-50 split

Inform -ation	Money	# of Tickets for Player 2						Frac. of	
	Prizes	20	25	30	35	40	45	50	Disagree.
Full Info.	1/1	0	0	1	0	1	0	20	0.00
	1.25/3.75	1	6	3	2	2	1	4	0.14
Part. Info.	1/1	0	0	0	0	0	1	14	0.06
	1.25/3.75	0	0	0	0	0	3	13	0.00

- Results: Agreements cluster at 50-50
 - Rare Disagreement
 - 14% Disagreement when both know inequality
 - Divide tickets equally vs. \$\$\$ payoffs equally
 - Sensitive to \$\$\$ payoffs (violate independence of affine transformation)
- Pairs settle in the final minutes (Stubbornness?)
- Follow-up: "strong reputation" trained by computers carry on to new human opponents

- Mehta, Starmer and Sugden (1992)
- Nash Demand Game: 2 Players
 - Each state demand
 - Get their demand If sum < 10, zero otherwise.
- Focal point: Players divide 8 cards (w/ 4 aces)
 - Aces split 2-2: Agree on 50-50 Split
 - Aces 1-3: Half 50-50, Half 25-75; 25% disagree

- Roth (1985): Coordination game propose 50-50 or h -(100-h) simultaneously
- MSE: $p_1 = \frac{h-50}{150-h}$ $p_2 = \frac{h-50}{h+50}$
- Disagreement rates:
 - Prediction: $0 \rightarrow 7 \rightarrow 10$ (Actual: $7 \rightarrow 18 \rightarrow 25$)
- Murnighan et al. (1988):
 - Prediction: $1 \rightarrow 19$ (Actual: constant across h)

- Cause of Disagreement: Self-Serving Bias
 - "What is better for me" is "Fair"
- Loewenstein et al. 93, Babcock et al. 95, 97
 - Bargain on how to settle a legal case
 - Guess what the judge would award (if disagree)
- Diff. in E(judgement) predicts disagreement
 - Vanishes if don't know roles before reading case
 - Vanishes if "first list weakness of my own case"

- Finite Alternating-Offer Game
- Binmore, Shaked & Sutton (1985): 2 period
- 1 offers a division of 100p to 2
- If 2 rejects, makes counteroffer dividing 25p
- SPE: Offer 25-75
- Experimental Results: mode at 50-50, some 25-75 and others in between

- Neelin, Sonnenschein and Spiegel (1988)
 - Economics undergrads yield different results
- Are they taught backward induction? Also,
- Binmore "YOU WOULD BE DOING US A FAVOR IF YOU SIMPLY SET OUT TO MAXIMIZE YOUR WINNINGS."
- Neelin "You would be discussing the theory this experiment is designed to test in class."

- Social Preference or Limited Strategic Thinking?
- Johnson, Camerer, Sen & Rymon (2002), "<u>Detecting Failures of Backward Induction:</u>
 <u>Monitoring Information Search in Sequential Bargaining</u>," *Journal of Economic Theory*, 104 (1), 16-47.
- Some do not even look at the last stage payoffs in 3-stage bargaining games...

- Random Termination vs. Discounting
- Zwick, Rapoport and Howard (1992)
- Divide \$30 with random termination
- Continuation probabilities 0.90, 0.67, 0.17
- SPE: 14.21, 12, 4.29
 - Accepted final offers: 14.97, 14.76, 13.92
- Close to discounting results (50-50 & SPE)
 - -14.90, 14.64, 13.57

- Fixed Delay Cost in Bargaining
 - Lost wages, profits, etc.
- The side with the lower delay cost should get almost everything
- Rapoport, Weg and Felsenthal (1990)
- Divide 30 shekels
- Fixed Cost: 0.1 vs. 2.5 or 0.2 vs. 3.0
- Strong support for SPE (BGT, Table 4.7)

Outside Option and Threat Points

- Binmore, Shaked and Sutton (1989)
- Bargain over £7; player 2 has outside options of £0, £2, or £4
 - Split-the-difference: NBS predicts dividing surplus gained beyond the threat points
 - Deal-me-out: SPE predicts change in results only when threat is credible
- BGT, Fig. 4.4: Deal-me-out wins

Incomplete Information

- Add asymmetric information to bargaining
- More realistic, but
 - Hard to bargain for a bigger share AND convey information at the same time
- Might need to turn down an offer to signal patience or a better outside option

- Rapoport, Erve, and Zwick (MS 1995)
- Seller: Own item (worthless to herself)
- Buyer: Private reservation price is unif.[0,1]
- Seller makes an offer each period
- Common discount factor δ

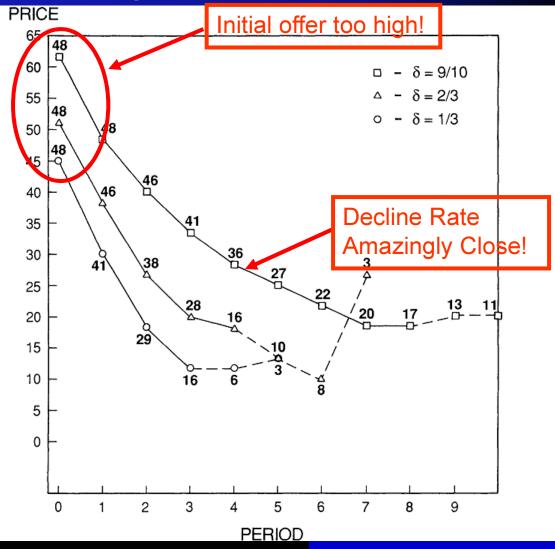
- Unique Sequential Equilibrium:
- Seller Offer:

$$p_0 = \gamma \cdot \frac{1 - \delta}{1 - \gamma \cdot \delta}, \quad \gamma = \frac{1 - \sqrt{1 - \delta}}{\delta}$$

• Subsequently: $\dot{p_t} = p_0 \cdot \gamma^t$

• Buyer Accepts if $p_t \leq v \cdot \frac{1-\sigma}{1-\gamma \cdot \delta}$

- Complicate Strategy: Depend on δ
 - Price discriminate high/low-value buyers
 - Price declines slow enough so high-value buyers will not want to wait
- Can subjects get these in experiments?
 - Different δ : H (0.90), M (0.67), L (0.33)
 - Opening p_{θ} : H (0.24), M (0.36), L (0.45)
 - Discount γ : H (0.76), M (0.68), L (0.55)



- Can subjects get these in experiments?
 - Different δ : H (0.90), M (0.67), L (0.33)
 - Opening p_{θ} : H (0.24), M (0.36), L (0.45)
 - Discount γ : H (0.76), M (0.68), L (0.55)
- \bullet Buyers accept the $1^{\rm st}$ or $2^{\rm nd}$ offer below v
 - Accept offers too soon
- Sellers ask for higher prices (than equil.)
 - But discount γ : H (0.81), M (0.68), L (0.55)

- Forsythe, Kennan and Sopher (AER 1991)
- Only Informed bargainer I sees pie size
 - Either large (π_q) or small (π_b)
- Free-form bargaining
- Uninformed U can strike to shrink pie by γ
- Can we predict what happens?

- Myerson (1979): Revelation Principle
 - announces true state
 - U strikes to shrink pie by γ_q or γ_b
 - -I gives U (based on true state) x_g or x_b
- IC requires:

$$(\gamma_g - \gamma_b)\pi_b \le x_g - x_b \le (\gamma_g - \gamma_b)\pi_g$$

• Interim Incentive Efficiency requires:

$$\gamma_g = 1, x_g - x_b = (1 - \gamma_b)\pi_g$$

• Strike ($\gamma_b < 1$) if and only if $p\pi_g > \pi_b$

- Deriving this is complicated...
- Could ANY subject get close to this?

- Random Dictator (RD) Axiom:
 - Agree fair mix between each being dictator to propose mechanism
- Then:

$$\gamma_g = 1, x_g = \frac{\pi_g}{2}, \gamma_b = \frac{1}{2}, x_b = 0 \text{ if } p\pi_g > \pi_b$$

$$\gamma_g = 1, x_g = \frac{\pi_b}{2}, \gamma_b = 1, x_b = \frac{\pi_b}{2} \text{ if } p\pi_g < \pi_b$$

- This is a win-win experiment:
 - Success if theory predictions are close
 - If not, will point to which assumption fails
- Forsythe et al. (AER 1995):
 - 10 minute sessions; written messages
- Is Myerson (1979) confirmed?
 - Surprisingly yes, though not perfect...

$p\pi_g < \pi_b$

Strike Condition Off

Game	p	State	π	π_{U}	π_{l}	total	%Strike
III	0.5	b	2.80				
		യ	4.20				
		aver.	3.50	1.50	1.80	3.29	6.0
		pred.		1.40	2.10	3.50	0.0
IV	0.25	b	2.40				
		ന	6.80				
		aver.	3 EQ	1.21	2.04	3.24	7.4
		pred.	3.50	1.20	2.30	3.50	0.0

$p\pi_g > \pi_b$

Strike Condition On

Game	р	State	π	π_{U}	π_{l}	total	%Strike
	0.5	b	1.00				
		g	6.00				
		aver.	3.50	1.05	2.00	3.05	13.0
		pred.		1.50	1.75	3.25	7.1
II	0.75	b	2.30				
		g	3.90				
		aver.	2 50	1.41	1.76	3.18	9.3
		pred.	3.50	1.46	1.75	3.21	8.3

Sealed-Bid in Bilateral Bargaining

- Both buyers and sellers have private information
- Sealed-Bid Mechanism
 - Both write down a price
 - Trade at the average if $p_b > p_s$
 - Call Market: Many buyers vs. many sellers
- Two-Person Sealed-Bid Mechanism
 - One form of bilateral bargaining

Sealed-Bid in Bilateral Bargaining

- Two-Person Sealed-Bid Mechanism
- Buyer $V \sim \text{unif.}[0,100]$; Seller $C \sim \text{unif.}[0,100]$
- Piecewise-linear equilibrium: (not unique)
 - Chatterjee and Samuelson (1983)
 - Max. ex_ante gains (Myerson & Satterthwaite 83')

$$p_b = \begin{cases} V & \text{if } V < 25\\ \frac{25}{3} + \frac{3}{2}V & \text{if } V \ge 25\\ p_s = \begin{cases} 25 + \frac{2}{3}C & \text{if } C < 75\\ C & \text{if } C \ge 75 \end{cases}$$

Sealed-Bid in Bilateral Bargaining

- Radner and Schotter (JET 1989): 8 sessions
- 1, 2, 8: Baseline as above
- 3: Trade at price (v + c + 50) / 3 if v > c + 25
 - Should bid their values v = V, c = C
- 4: Price = v, (Buyers should bid v = V/2)
- 5,6: Alternative distribution for more learning
 - Distribution w/ more trade (for learning): m=0.438
- 7: Face-to-face bargaining

Estima	ited_F	Buyer F	Bid Fu	nction	Slope	1		
	E	Below cuto	off	Abov	ve cutoff			
Session	β	β _hat	T-stat	β	β _hat	T-stat		
1	1	1.00	(0.01)	0.67	0.85*	(4.14)		
2	1	0.91	(-0.52)	0.67	1.06	(1.28)		
8	1	0.91	(-0.14)	0.67	0.80*	(2.32)		
3	1	0.92	(-0.08)	1	0.73*	(-2.64)		
4	0.5	0.55	(0.66)	0.5	0.58*	(2.32)		
5	1	0.80*	(-4.17)	0.438	0.50	(1.12)		
6(-20)	1	0.85	(-1.40)	0.438	0.40	(-0.56)		
6(21-)	1	1.11	(0.70)	0.438	0.32	(-1.55)		
5/28/2013 Joseph Tao-yi Wang Bargaining								

Estimated Seller Bid Function Slope

	Below cuto			Ab	ove cutof	=
Session	η β	β _hat	T-stat	β	β_hat	T-stat
1	0.67	0.58	(-1.38)	1	0.97	(-0.32)
2	0.67	0.74	(1.28)	1	1.07	(0.14)
8	0.67	0.75	(1.65)	1	1.07	(0.17)
3	1	1.06	(1.04)	1	0.67	(-0.58)
5	0.438	0.48	(0.87)	1	1.00	(0.60)
6(-20)	0.438	0.57*	(2.16)	1	0.97	(-0.79)
6(21-)	0.438	0.52	(1.20)	1	0.95	(-0.69)

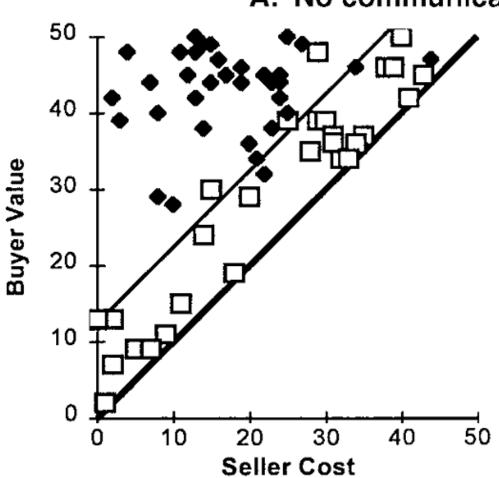
Sealed-Bid in Bilateral Bargaining

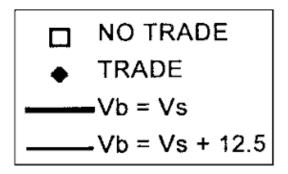
- Face-to-face yields efficiency 110%
 - Some truthfully reveal; others don't
- Radner and Schotter (1989, p.210),
- "The success of the face-to-face mechanism, if replicated, might lead to a halt in the search for better ways to structure bargaining in situations of incomplete information.
- It would create, however, a need for a theory of such structured bargaining in order to enable us to understand why the mechanism is so successful."

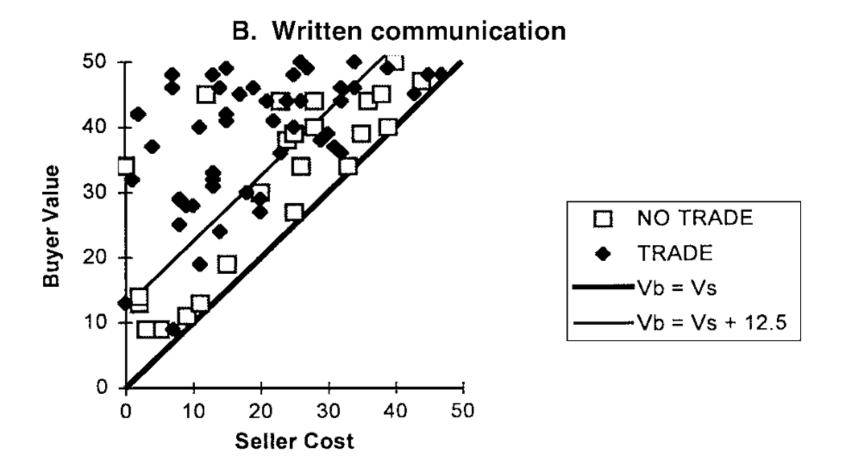
Sealed-Bid in Bilateral Bargaining

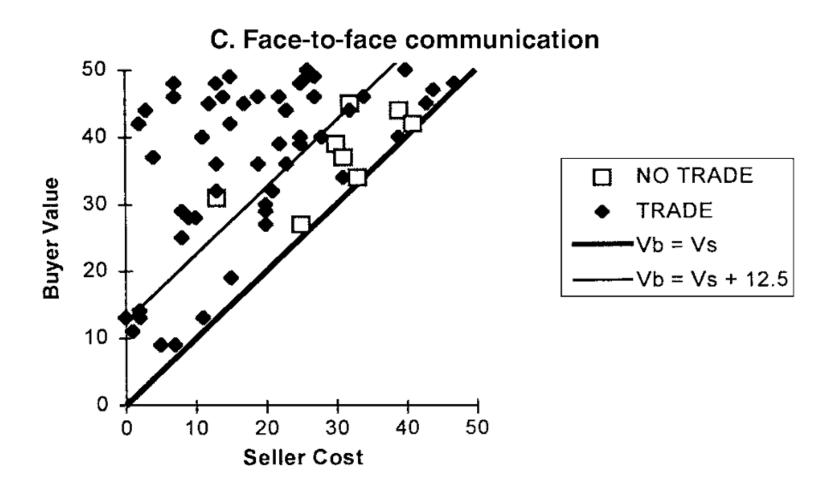
- Follow-up Studies:
- Schotter, Snyder and Zheng (GEB 2000)
 - Add agents
- Rapoport and Fuller (1995)
 - Strategy method; asymmetric value dist.
- Daniel, Seale and Rapoport (1998)
 - Asymmetric value distribution (20 vs. 200)
- Rapoport, Daniel and Seale (1998)
 - Flip buyer-seller asymmetry; fixed pairing

- Valley et al. (GEB 2002): Communication
- Buyer/Seller Values/Costs ~ uniform[0, \$50]
 - Bargain by stating bids; 7 periods; no rematch
 - Half had no feedback
- No communication: Sealed-bid in 2 minutes
- Written communication: Exchange messages for 13 minutes before final bid
- Face-to-face: Pre-game communication









- Empirical bid function slope = 0.7 (~0.67)
- Why are there "gains of communication"?
- Slope of buyer bids against seller bids=0.6
- Buyers bid higher when seller bids higher
 - Mutual bidding of values (common in students)
 - Mutual revelation of values (com. in students)
 - Coordinating on a price (40% written; 70% face)

- Coordinating on a price
 - Happens 40% in written, 70% in face-to-face
- Not truth-telling (only 1/3)
 - TT not coordinated (4% written, 8% face)
- Feel each other out; give enough surplus
 - Modal equal split of surplus
- Variance of surplus doubles (by mismatches)

Conclusion

- Unstructured Bargaining
 - Focal divisions; competing focal points
 - Self-serving bias (erased by veil of ignorance or stating weakness of own case)
- Structured Bargaining
 - Deviate toward equal splits
 - Social preference models could explain this
 - But Johnson et al. (JET 2002) suggest limited look-ahead as reason for such deviations

Conclusion

- Outside options affect bargaining divisions only if threats are credible
 - Lower fixed cost player gets everything
- Information Asymmetry: One-Sided
 - Revelation Principle + Random Dictator: Good
 - Bazaar mechanism:
 - Offers decline as theory predicts, but start too high and respond to δ wrongly
 - Buyers accept too early

Conclusion

- Bilateral Bargaining: Two-Sided
 - Sealed-bid mechanism: between truthful revelation and piecewise-linear equilibrium
- Players over-reveal values in face-to-face
 - Too honest, but "more efficient"
- Communication → agree on a single price
- Why theory does better in sealed-bid than alternative-offer bargaining?
 - Is sealed-bid cognitively more transparent?