Experimental

Implementations and Robustness of Fully Revealing Equilibria (FRE) in Multidimensional Cheap Talk

Joseph Tao-yi Wang National Taiwan University Joint with Ernest Lai (Lehigh) and Wooyoung Lim (HKUST)

Fund Managers vs. You

- You ask two fund managers for advice:
 - Manager A's fund is heavy on stocks
 - Manager B's fund is heavy on bonds
- "Should I invest in stocks? In bonds?"
 - -A: "Yes for stocks; Yes for bonds."
 - B: "No for stocks; Yes for bonds."
- Whose (which) advice should you listen to?
 Who has an incentive to say buy stocks/bonds?

Experts vs. Decision Maker

- Specialization in providing information:
 - Analysts-Investor
 - Experts-Government
 - Doctors-Patient
- Why ask for Second Opinion?
 - 1. Exploit Differences in Conflict of Interest
 - 2. Utilize Specialization in Information Collection?
- Battaglini (ECMA 2002)

Motivation **Baseline Games Robustness Games Behavioral Theory** Sender1's \mathbf{R}^2 y, θ_2 indifference curve Sender1's ideal point Sender2's indifference curve Sender2's *ideal point* x, θ_1 True state

Experts vs. Decision Maker

- Battaglini (ECMA 2002)
 - FRE exists for 2 senders and multi-dim. Space
 - Completely overcomes strategic issue
- Is this robust?
 - Battaglini (2002): Yes (to noise)
 - Ambrus and Takahashi (2008): No (to continuity of out-of-equilibrium beliefs)
- Empirical evidence of FRE and robustness?

Decision under 2D Uncertainty

• True State:

 $(H,V) \in \{L,R\} \times \{U,D\}$

• Receiver Action:

$$(h,v) \in A = \{l,r\} \times \{u,d\}$$

$$(L,U) \rightarrow (l,u) \qquad (R,U) \rightarrow (r,u)$$

 $(L,D) \rightarrow (l,d)$ $(R,D) \rightarrow (r,d)$

Decision under 2D Uncertainty

- Knowledgeable Sender(s) send messages: $m_i \in M_i = \{"(l, u), ""(r, u), ""(l, d), ""(r, d)"\}$
- $u_i^S(h, v | H, V)$ & $u^R(\cdot)$ generally misaligned, but:
- Sender 1 and receiver
 - Fix V, if H=L, both prefer (l, *) to (r, *)- and if H=R, (r, *) to (l, *)
- Sender 2 and receiver
 - Fix *H*, if V = U, both prefer (*, u)to (*, d)

- and if
$$V=D$$
, $(*,d)$ to $(*,u)$

Decision under 2D Uncertainty

- Suppose there is only one sender (Game S)
- And the true state is $\left(L,U\right)$
- If you were Sender 1, what would you "say"? $m_i \in \{(l,u),(r,u),(l,d),(r,d)\}$ $m_1 = (l,d)$
- Wouldn't Receiver "figure this out "?
- How about mixing with... $m_1 = (l, u)$

Exactly What Sender 1's Did!

How Do Receivers Respond?

Joseph Tao-yi Wang 2D Cheap Talk Experiments

Partially Revealing Equilibrium Outcome

Joseph Tao-yi Wang 2D Cheap Talk Experiments

Confirms: Proposition 1 (Game S)

- There exists a partially revealing equilibrium in Game S in which the single sender truthfully reveals only on dimension *H*.
- Furthermore, the information partition $\{(L, U | L, D)\} \{(R, U | R, R, D)\}\}$
- that the receiver receives in the equilibrium is the only partition that is consistent with equilibrium.
 What If Two Senders?

Sender Behavior: Dimension H (L/R)

Joseph Tao-yi Wang 2D Cheap Talk Experiments

Sender Behavior: Dimension V (U/D)

Receivers Follow the "Right" Dimensions

Joseph Tao-yi Wang 2D Cheap Talk Experiments

FRE: Frequency of State=Action

Confirms: Proposition 2 (FRE in Game T)

- There exists a fully revealing equilibrium (FRE) in Game T in which each sender truthfully reveals on at least one dimension.
- Two major classes of senders' strategy profiles that constitute a FRE are:
 - Both Sender 1 and Sender 2 truthfully reveal on both dimensions H and V
 - Sender 1 truthfully reveals only on dimension H and Sender 2 only on dimension V (both babble by means of randomization on the other dimension)

Summary: Laboratory Experiments

- Four Treatments (Between-Subject Design)
 - Baseline: Game S vs. Game T
 - Robustness: Game T' vs. Game R
- Subjects: 260 NTU students
 - @ Taiwan Social Science Experimental Laboratory (TASSEL) at National Taiwan University
- Four Sessions Each: 5-7 groups (or 9-group)
 - 3 practice + 50 real rounds, fixed role, random match
 - Averaged US\$26.91; ranging [\$12.43, \$45.50]

Robustness of FRE

- What if we only allow Sender 1 to say ''L/R'' and Sender 2 to say ''U/D''?
- Two Effects:
 - Receivers can no longer cross-check
 - Focus on FRE dimension
- Game T': Restrict to FRE-dim messages
- No "out-of-equilibrium" belief!
- Also, Slightly Perturb Payoffs (to kill Dominance)

Baseline Games

Robustness Games

Behavioral Theory

Motivation

Baseline Games

Robustness Games

Behavioral Theory

What If FRE Require Crazy Out-of-Eq Beliefs?

Proposition 4 (Game R)

- A FRE exists in Game R if and only if it is supported by out-of-equilibrium beliefs that induce the receiver to
- take action (left, up) with probability $\geq \frac{1}{2}$
- after receiving irreconcilable message pair (r,d)
 "Believing" message (r,d) "means" (L,U)
- Is this FRE "robust"?
- Can people really play this weird FRE?

Motivation

Baseline Games

Robustness Games

Behavioral Theory

Game R Receivers: Follow M Except (R,D)

Game R: Beliefs about (R,D) are Correct!

Motivation

Baseline Games

Robustness Games

Behavioral Theory

Individual Subject Data

- Honest senders always tell the truth -43% senders in the experiment are honest
- Strategic Sender 1
 - State (<u>L</u>,U) *<u>'<i>left*</u>" – State (<u>L</u>,D) - '<u>'right</u>'
- Strategic Sender 2
 - State (R,<u>U</u>) *<u>'down</u>'* – State (L,U) - *"<u>up</u>"*

State (<u>R</u>,U) - *"<u>right</u>"*

- State (L,<u>D</u>) - *'<u>down</u>"*

Proposition 5 (Game R)

- Sender nonstrategic honest with probability λ Common knowledge
- there exists a robust partially revealing equilibrium in which the receiver follows recommendations unless it is <u>irreconcilable</u>
 - Uniformly randomizes between actions (right, up)
 & (left, down) if she receives the irreconcilable message pair ("right", "down").

Also: Proposition 6 (Game S, T, T')

- Sender is nonstrategic truthful with prob. λ – Common knowledge
- The unique informative equilibrium outcome of Game S in the original model:
 - Sender truthfully reveals only on dimension ${\boldsymbol{H}}$
- still survives for any $\lambda \leq \frac{1}{2}$
- The FRE in Game T and T' survives for any λ

Conclusion

- Can we implement FRE in 2-sender, 2D state space setting?
- Qualified YES!
 - Simplest case, 50 rounds of learning, etc.
- Crazy out-of-equilibrium beliefs don't "work"
- Behavioral Model with some nonstrategic, honest Senders explains this...
- Next Step: What about other FREs?