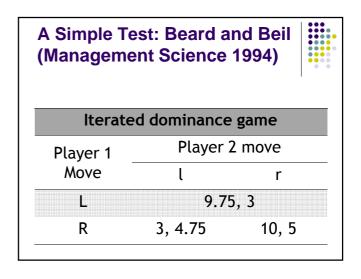


Dominance


- Do people obey dominance?
 - Looking both sides to cross a 1-way street
 - "If you can see this, I can't see you."
 - p-Beauty Contest behavior (guess above 67)
- Will you bet on others obeying dominance?
 - Workers respond to incentives rationallyCompanies don't use "optimal" contracts
- SOPH: Knowing other's steps of reasoning

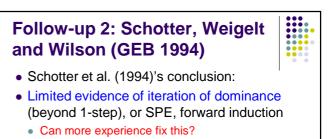
Belief of Iterated Dominance

- 1. Obey Dominance,
- 2. Believe that others obey dominance,
- 3. Believe that others believe you'll obey dominance,
- 4. Believe that others believe that you believe they obey dominance,
- 5. Believe that others believe that you believe that they believe you obey dominance, etc...

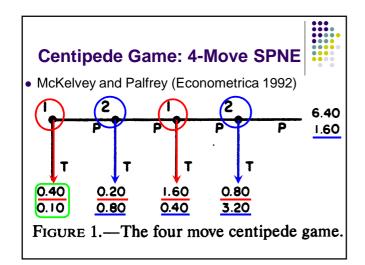
Outline

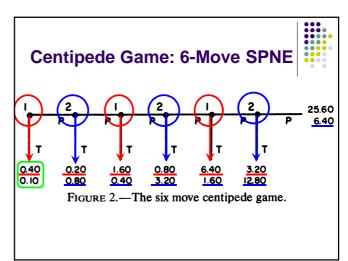
- A Simple Test: Beard & Beil (MS 94')
- Centipede:
 - McKelvey & Palfrey (Econometrica 92')
- Mechanism Design:
 - Sefton and Yavas (GEB 96')
- Dirty Face:
 - Weber (EE 01')

A Simple							
Treatment	Pa	ayoffs from		Frequ	ency	# of	Thres -hold
freatment	(L, l)	(R, l)	(R, r)	L	r R	Pairs	-nota P(r R)
1 (baseline)	(9.75, 3)	(3, 4.75)	(10, 5)	66%	83%	35	97 %
2 (less risk)	(9 , 3)	(3, 4.75)	(10, 5)	65%	100%	31	85%
3 (even less risk)	(<u>7</u> , 3)	(3, 4.75)	(10, 5)	20%	100%	25	57%
4 (more assurance)	(9.75, 3)	(3, 3)	(10, 5)	47%	100%	32	97%
5 (more resentment)	(9.75 <u>, 6</u>)	(3, 4.75)	(10, 5)	86%	100%	21	97 %
6 (less risk, more reciprocity)	(9.75, 5)	(5 , 9.75)	(10, 10)	31%	100%	26	95%
7 (1/6 payoff)	(58.5,18)	(18,28.5)	(60,30)	67%	100%	30	97%

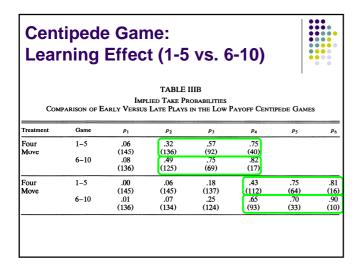

A Simple Test: Beard and Beil

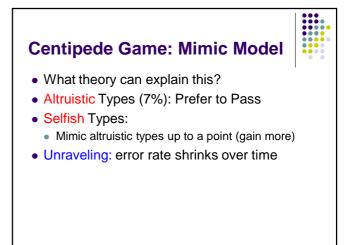
- Player 2 mostly DO obey dominance
- Player 1 is inclined to believe this
 Though they can be convinced if incentives are strong for the other side to comply
- Follow-up studies show similar results:
 - Goeree and Holt (PNAS 1999)
 - Schotter, Weigelt and Wilson (GEB 1994)


Follow-up 1: Goeree and Holt (PNAS 1999)								
	# of	Thres		Payoffs		Freq	uency	
Condition	# Of Pairs	-hold P(r R)	(L)	(R, l)	(R, r)	(L)	(r R)	
Baseline 1	25	33%	(70, 60)	(60, 10)	(90, 50)	12%	100%	
Lower Assurance	25	33%	(70, 60)	(60, <u>48</u>)	(90, 50)	32%	53%	
Baseline 2	15	85%	(80, 50)	(20, 10)	(90, 70)	13%	100%	
Low Assurance	25	85%	(80, 50)	(20, <u>68</u>)	(90, 70)	52%	75%	
Very Low Assurance	25	85%	(400,250)	(100, <u>348</u>)	(450 , <u>350</u>)	80%	80%	


Follow-up 2: Schotter, Weigelt and Wilson (GEB 1994)							
Normal Form	Play	er 2	Game	1M			
Player 1	ι	r	Freque	ncy			
L	4, 4	4, 4	(57%)			
R	0, 1	<u>6, 3</u>	(43%)			
Frequency	(20%)	(80%)					
Sequential Form			Game	1 S			
L	4, 4		(8%)				
	ι	r					
R	0, 1	6,3	(92 %)				
Frequency	(2%)	(98 %)					

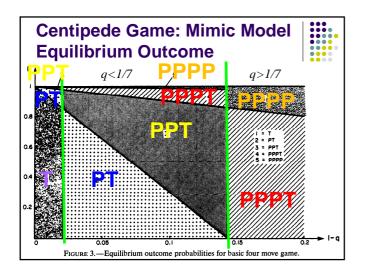
Normal Form		Pla	ayer 2		Game 3M
Player 1	Т		Μ	В	Frequency
Т	4, 4		4, 4	4, 4	(82%)
Μ	0, 1		<u>6, 3</u>	0,0	(16%)
В	0, 1		0, 0	3, <mark>6</mark>	(2%)
Frequency	(70%)	(<mark>26%)</mark>	(4%)	
Sequential F	orm				Game 3S
T 4,4	Т				(70%)
	0, 1				
			М	В	
		Μ	6,3	0,0	(100%)
		В	0,0	3,6	(0%)
Frequency	(13%)		(31%)	(69%)	

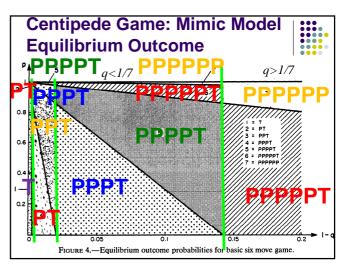

- No for forward induction in 8 periods...
 - Brandts and Holt (1995)
- But, Yes for 3-step iteration in 160 periods
 Rapoport and Amaldoss (1997): Patent Race



Centipede Game: Outcome											
			Т	ABLE	IIA						
	P	ROPORTION OF	Observ	ATIONS	ат Еасн	TERMIN	ial Noe	E			
		Session	N	f_1	f_2	<i>f</i> ₃	f_4	f_5	f ₆	f7	
Four Move	1 2 3	(PCC) (PCC) (CIT)	100 81 100	.06 .10 .06	.26 .38 .43	.44 .40 .28	.20 .11 .14	.04 .01 .09			
	Total	1–3	281	.071	.356	.370	.153	.049			
High Payoff	4	(High-CIT)	100	.150	.370	.320	.110	.050			
Six Move	5 6 7	(CIT) (PCC) (PCC)	100 81 100	.02 .00 .00	.09 .02 .07	.39 .04 .14	.28 .46 .43	.20 .35 .23	.01 .11 .12	.01 .02 .01	
	Total	5-7	281	.007	.064	.199	. 3 84	.253	.078	.014	
				V							

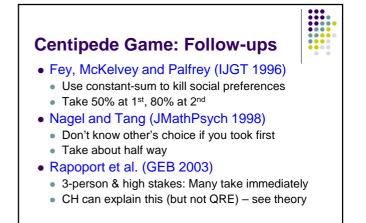
Cer	ntipede	e Gai	me: F	r(Ta l	ke)		
	Імріл	ED TAKE PRO	TABLE II		PEDE GAME		
	Session	P1	<i>p</i> ₂	<i>P</i> ₃	P4	P5	<i>p</i> ₆
	1 (PCC)	.06	.28	.65	.83		
Four Move	2 (PCC)	(100) .10 (81)	(94) .42 (73)	(68) .76 (42)	(24) .90 (10)		
More	3 (CIT)	.06 (100)	. <u>46</u> (94)	(51)	.61 (23)		
	Total 1-3	.07 (281)	.38 (261)	.65 (161)	.75 (57)		
High Payoff	4 (CIT)	.15 (100)	.44 (85)	.67 (48)	.69 (16)		
	5 (CIT)	.02 (100)	.09 (98)	.44	.56	.91	.50 (2)
Six Move	6 (PCC)	.00 (81)	.02 (81)	.04 (79)	.49	.72	.82
	7 (PCC)	.00 (100)	.07 (100)	.15 (93)	.54 (79)	.64	.92
	Total 5-7	.01 (281)	.06 (279)	.21 (261)	.53 (205)	.73 (97)	.85 (26)
^a The num	ber in parentheses is	-++				00	(20)




Centipede Game: Mimic Model

- Selfish players sometimes pass (mimic altruist)
- By imitating an altruist one might lure an opponent into passing at the next move
 Raising one's final payoff in the game
- Equilibrium imitation rate depends directly on the beliefs about the likelihood (*1-q*) of a randomly selected player being an altruist.
 - The more likely players believe there are altruists in the population, the more imitation there is.

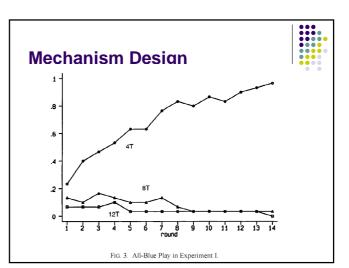
Centipede Game: Mimic Model Predictions for Normal Types


- 1. On the last move, Player 2 TAKE for any q
- 2. If *1-q>1/7*, both Player 1 and Player 2 PASS
 (Except on the last move Player 2 always TAKE)
- 3. If $0 < 1 q < 1/7 \rightarrow$ Mixed Strategy Equilibrium
- 4. If 1-q=0 both Player 1 and Player 2 TAKE

Centipede Game: Mimic Model Add Noisy Play

- We model noisy play in the following way.
- In game *t*, at node *s*, if *p** is the equilibrium probability of TAKE that the player at that node attempts to implement,
- We assume that the player actually chooses TAKE with probability $(1-\varepsilon_t)p^*$, and makes a random move with probability ε_t
- $\varepsilon_t = \varepsilon e^{-\delta(t-1)}$
- Explains further deviation from mimic model...

Mechanism Design


- Pure coordination game with \$1.20 & \$0.60
- How can you implement a Pareto-inferior equilibrium in a pure coordination games?
- Abreu & Matsushima (Econometrica 1992)
 - Slice the game into "T periods"
 - F: Fine paid by first subject to deviate
 - Won't deviate if F > \$1.20/T
 - Can set T=1, F=\$1.20; more credible if T large

Mechanism DesignGlazer and Rosenthal (Economtrica 1992)

- Comment: AM mechanism requires more steps of iterated deletion of dominated strategies
- Abreu & Matsushima (Econometrica 1992)
 - Respond: "[Our] gut instinct is that our mechanism will not fare poorly in terms of the essential feature of its construction, that is, the significant multiplicative effect of 'fines."
- This invites an experiment!

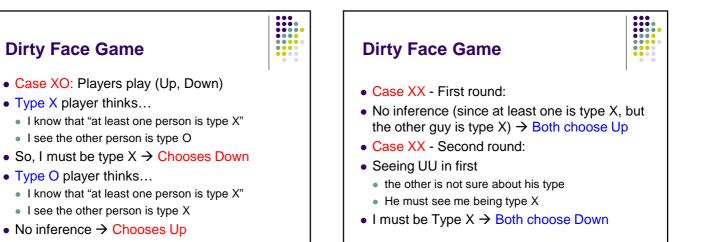
Mechanism Design

- Sefton and Yavas (GEB 1996)
- F=\$0.225
- *T*=4, 8, or *12*
 - Theory: Play inferior NE at T=8 or 12, not T=4
- Results: Opposite, and diverge...
- Why? Choose only 1 switchpoint in middle
- Goal: switch soon, but 1 period after opponent

Mechanism Design

- Glazer and Perry (GEB 1996)
 - Implemental can work in sequential game via backward induction
- Katok, Sefton and Yavas (JET 2002)
- Doesn't work either
- Can any "approximately rational explanation" get this result?
 - Maybe "Limited steps of IDDS + Learning"

Dirty Face Game


- Three ladies, A, B, C, in a railway carriage all have dirty faces and are all laughing.
- It sudden flashes on A:
- Why doesn't B realize C is laughing at her? Heavens! / must be laughable.
 - Littlewood (1953), "A Mathematician's Miscellany
- Requires A to think that B is rational enough to draw inference from C

Dirty Face Game: Weber (Exp. Econ. 2001)

- Independent types X (Prob=.8) or O (Prob=.2)
 X is like "dirty face"
- Commonly told "At least one player is type X."
 P(XX) = 0.64→2/3, P(XO) = 0.32→1/3
- Observe other's type
- Choose Up or Down (figure out one is type X)
- If nobody chooses Down, reveal other's choice and play again

Dirty Fac	ce Game		
		Ту	pe
	_	Х	0
Proba	ability	0.8	0.2
Action	Up	\$0	\$0
Action	Down	\$1	-\$5

Dirty Face Game							
		Tria	al 1	Tria	al 2		
	-	XO	XX	XO	XX		
Round	UU	0	7*	1	7*		
Round	DU	3*	3	4*	1		
I	DD	0	0	0	0		
Round	UU	-	1	-	2		
2	DU	-	5	-	2		
(after	DD	-	1*	-	3*		
UU)	Other	-	-	(1)	-		

Dirty Face Game	
 Results: 87% rational in XO, but only 53% 2nd round of XX 	in
Significance:	
 Choices reveal limited reasoning, not pure cooperativeness)
More iteration is better here	
 Upper bound of iterative reasoning 	
 Caltech students still don't do 2 steps 	

Conclusion

- Do you obey dominance?
- Would you count on others obeying dominance?
- Limit of Strategic Thinking: 2-3 steps
- Compare with Theories of Initial Responses
 Level-k Types: Stahl-Wilson95, CGCB01, CGC06
 - Cognitive Hierarchy: CHC04