

Hide-and-Seek Games (with Non-neutral Location Framing)

• RTH: Rubinstein & Tversky (1993); Rubinstein, Tversky, & Heller (1996); Rubinstein (1998,1999)

- Your opponent has hidden a prize in one of four boxes arranged in a row.
- The boxes are marked as shown below: A, B, A, A.

Hide-and-Seek Games (with Non-neutral Location Framing)

- RTH (Continued):
- Your goal is, of course, to find the prize.
- His goal is that you will not find it.
- You are allowed to open only one box.
- Which box are you going to open?

Hide-and-Seek Games (with Non-neutral Location Framing)

- Folk Theory: "...in Lake Wobegon, the correct answer is usually 'c'."
 - Garrison Keillor (1997) on multiple-choice tests
- Comment on the poisoning of Ukrainian presidential candidate (now president):
- "Any government wanting to kill an opponent ...would not try it at a meeting with government officials."
 - Viktor Yushchenko, quoted in Chivers (2004)

Hide-and-Seek Games (with Non-neutral Location Framing)

- RTH's game has a unique equilibrium, in which both players randomize uniformly
- Expected payoffs: Hider 3/4, Seeker 1/4

Hider/Seeker	А	В	А	А
Α	0,1	1,0	1,0	1,0
В	1,0	0,1	1,0	1,0
А	1,0	1,0	0,1	1,0
A	1,0	1,0	1,0	0,1

- The two "end A" may be inherently salient
- This gives the "central A" location its own brand of uniqueness as the "least salient" location

Hide-and-Seek Games (with Non-neutral Location Framing)

- All Treatments in RTH:
- Baseline: ABAA ("Treasure")
- Variants:
 - Left-Right Reverse: AABA
 - Labeling: 1234 (2 is like "B", 3 is like "central A")
- Mine Treatments
 - Hider hides a mine in 1 location, and Seeker wants to avoid the mine (payoffs reversed)
 - "mine hiders" = seekers, "mine seekers" = hiders

Hide-and-Seek Games: Aggregate Frequencies of RTH									
	RTH-4	Α	В	Α	Α <				
	Hider (53)	9%	36%	40%	15%	Different			
	Seeker (62)	13%	31%	45%	11%	locations for B			
	F-AABA-Treasure	Α	Α	В	Α <				
Player roles reversed	Hider (189)	22%	35%	19%	25%				
	Seeker (85)	13%	51%	21%	15%				
	RT-AABA-Mine	Α	Α	В	Α	<u> </u>			
	Hider (132)	24%	39%	18%	18%				
	Seeker (73)	29%	36%	14%	22%	2 analogous			
R	T-1234-Treasure	1	2	3	4	to B			
	Hider (187)	25%	22%	36%	18%				
	Seeker (84)	20%	18%	48%	14%	_			
	RT-1234-Mine	1	2	3	4				
	Hider (133)	18%	20%	44%	17%				
	Seeker (72)	19%	25%	36%	19%	_			
	R-ABAA	Α	В	Α	Α				
	Hider (50)	16%	18%	44%	22%				
	Seeker (64)	16%	19%	54%	11%				

Hide-and-Seek Games: Pooled Aggregate Choices of RTH

- Chi-square Test across 6 different Treatments
 - No significant differences for Seekers (*p*-value 0.48) or Hiders (*p*-value 0.16)
- Can pool data...

	Α	В	A	Α
Hiders	0.2163	0.2115	0.3654	0.2067
(624)				
Seekers	0.1821	0.2054	0.4589	0.1536
(560)				

Hide-and-Seel Aggregate Fre	н				
RTH-4	Α	В	Α	Α	· (
Hider (53)	9%	36%	40%	15%	
Seeker (62)	13%	31%	45%	11%	
RT-AABA-Treasure	Α	Α	В	Α	
Hider (189)	22%	35%	19%	25%	
Seeker (85)	13%	51%	21%	15%	
RT-AABA-Mine	Α	A	В	Α	
Hider (132)	24%	39%	18%	18%	"Stylized
Seeker (73)	29%	36%	14%	22%	facts"
RT-1234-Treasure	1	2	3	4	
Hider (187)	25%	22%	36%	18%	
Seeker (84)	20%	18%	48%	14%	
RT-1234-Mine	1	2	3	4	
Hider (133)	18%	20%	44%	17%	
Seeker (72)	19%	25%	36%	19%	
R-ABAA	Α	В	A	Α	
Hider (50)	16%	18%	44%	22%	
Seeker (64)	16%	19%	54%	11%	

....

....

Hide-and-Seek Games: Explaining the stylized facts

- Can a strategic theory explain this?
- Heterogeneous population with substantial frequencies of L2 and L3 as well as L1 (estimated 19% L1, 32% L2, 24% L3, 25% L4) can reproduce the stylized facts
- More on Level-k later...
 - Let's first see more evidence in DS Games...

Simultaneous Dominant Solvable (DS) Games

- Initial Response vs. Equilibration
- Price Competition
 - Capra, Goeree, Gomez and Holt (IER 2002)
- Traveler's Dilemma
 - Capra, Goeree, Gomez and Holt (AER 1999)
- *p*-Beauty Contest
 - Nagel (AER 1995)
 - Camerer, Ho, Weigelt (AER 1998)

Price Competition

- Capra, Goeree, Gomez & Holt (IER 2002)
 - Two firms pick prices $p_1 \& p_2$ from \$0,60~\$1.60
 - Both get $(1+a)*p_1/2$ if tied; but if $p_1 < p_2$
 - Low-price firm gets $1*p_1$; other firm gets $a*p_1$
- *a* = responsiveness to "best price" (=0.2/0.8)
 - a →1: "Meet-or-release" (low price guarantees)
 - *a*<1: Bertrand competition predicts lowest price

• Named after Keynes, General Theory (1936)

....

• "...professional investment may be likened to those newspaper competitions in which the competitors have to pick out the six prettiest faces from a hundred photographs,

....

p-Beauty Contest Game

- "It is not a case of choosing those [faces] that, to the best of one's judgment, are really the prettiest,
- nor even those that average opinion genuinely thinks the prettiest.

p-Beauty Contest Game

- We have reached the third degree where we devote our intelligences to...
- anticipating what average opinion expects the average opinion to be.
- And there are some, I believe, who practice the fourth, fifth and higher degrees."
 - Keynes, General Theory, 1936, pp. 155-56

Camerer, Ho and Weigelt (AER 1998)

• RESULT 1:

First-period choices are far from equilibrium, and centered near the interval midpoint. Choices converge toward the equilibrium point over time.

• Baseline: IT(0.9,7) and IT(0.7, 7)

Camerer, Ho and Weigelt (AER 1998)

• IT(0.9,7) vs. IT(0.7, 7)

• RESULT 2:

On average, choices are closer to the equilibrium point for games with finite thresholds, and for games with p further from 1.

• Infinite vs. Finite...

Camerer, Ho and Weigelt (AER 1998)

• RESULT 3:

Choices are closer to equilibrium for large (7person) groups than for small (3-person) groups.

• More on 7-group vs. 3-group...

• RESULT 4:

Choices by [cross-game] experienced subjects are no different than choices by inexperienced subjects in the first round, but converge faster to equilibrium.

• Inexperienced vs. Experienced...

....

....

Nagel's data

(groups of 16-18)

IT(2/3, n)

28.36 (13.11)

34.33 (44.26)

37.31 (39.34)

0.00 (3.28)

52.23 (50.00)

14.72

1.00

243.95

IT(0.5, n)

45.83 (23.94)

37.50 (29.58)

16.67 (40.84)

0.00 (5.63)

35.53 (50.00)

22.70

0.24

168.48

Camerer, Ho and Weigelt (AER 1998)

- Classification of Types
 - Follow Stahl and Wilson (GEB 1995)
- Level-0: pick randomly from N(mu, sigma)
- Level-1: BR to level-0 with noise
- Level-2: BR to level-1 with noise
- Level-3: BR to level-2 with noise
- Estimate type, error using MLE

Camerer, Ho and Weigelt (AER 1998)

- Robustness checks:
 - High stakes (Fig.1.3 small effect lowering numbers)
 - Median vs. Mean (Nagel 99' same): BGT Figure 5.1
 - p* (Median +18): equilibrium inside
- Subject Pool Variation:
 - Portfolio managers
 - Econ PhD, Caltech undergrads
 - Caltech Board of Trustees (CEOs)
 - Readers of Financial Times and Expansion
- Experience vs. Inexperience (for the same game)
 - Slonim (EE 2005) Experience good only for 1^{st} round

 Theory for Initial Response (BGT, Ch. 5) vs. Theory for Equilibration (BGT, Ch. 6) First: Stahl and Wilson (GEB 1995) Better: Costa-Gomes, Crawford & Broseta (Econometrica 2001) New: Camerer, Ho and Chong (QJE 2004) Poisson Cognitive Hierarchy 	
 Better: Costa-Gomes, Crawford & Broseta (Econometrica 2001) New: Camerer, Ho and Chong (QJE 2004) Poisson Cognitive Hierarchy 	
Poisson Cognitive Hierarchy	
 New: Costa-Gomes & Crawford (AER 2006) 	6)

Camerer, Ho and Weigelt

Out data

(groups of 3 or 7)

IT(p, n)

15.93

20.74

13.53

49.50

70.13

28.28

1.00

1128.29

Type distribution...

TABLE 3-MAXIMUM-LIKELIHOOD ESTIMATES AND LOG-LIKELIHOODS FOR LEVELS

OF ITERATED DOMINANCE (FIRST-ROUND DATA ONLY)

FT(p, n)

21.72

31.46

12.73

34.08

100.50

26.89

1.00

1057.28

(AER 1998)

Parameter

estimates

 ω_1

 ω_2

-LL

Level-k Theory: Stahl and Wilson (GEB 1995)

:::.

 $\bullet \bullet \bullet \bullet$

- Stahl and Wilson (GEB 1995)
- Level-0: Random play
- Level-1: BR to Random play
- Level-2: BR to Level-1
- Nash: Play Nash Equilibrium
- Worldly: BR to distribution of Level-0, Level-1 and Nash types

Level-k Theory: Costa-Gomes, Crawford and Broseta (Econometrica 2001)

- 18 "2-player NF games" designed to separate:
- Naïve (L1), Altruistic (max sum)
- Optimistic (maximax), Pesimistic (maximin)
- L2 (BR to L1)
- D1/D2 (1/2 round of DS deletion)
- Sophisticated (BR to empirical)
- Equilibrium (play Nash)

Level-k Theory: Stahl and Wilson (GEB 1995) Table IV Parameter Estimates and Confidence Intervals for Mixture Model without RE Types									
	Estimate	Std. Dev.	95 percent	conf. int.					
$\frac{\gamma_1}{\gamma_1}$	0.2177	0.0425	0.1621	0.3055					
μ2	0.4611	0.0616	0.2014 [0.2360	0.8567 0.8567]					
γ_2	3.0785	0.5743	1.9029	4.9672					
73	4.9933	0.9357	1.9964	5.0000					
μ4	0.0624	0.0063	0.0527	0.0774					
€4	0.4411	0.0773	0.2983	0.5882					
74	0.3326	0.0549	0.2433	0.4591					
an	0.1749	0.0587	0.0675	0.3047					
α_1	0.2072	0.0575	0.1041	0.3298					
α2	0.0207	0.0202	0.0000	0.0625					
α3	0.1666	0.0602	0.0600	0.2957					
α4	0.4306	0.0782	0.2810	0.5723					
£	-442.727			Туре	distribu	ition			

Level-k Theory: CGCB (Econometrica 2001)

- Results 1: Consistency of Strategies with Iterated Dominance
- B, OB: 90%, 65%, 15% equilibrium play
- For Equilibria requiring 1, 2, 3 levels of ID
- TS: 90-100% equilibrium play
 - For all levels
- Game-theoretic reasoning is not computationally difficult, but unnatural.

Level-k Theory: CGCB (2001)											
Result 2: Estimate Subject Decision Rule											
Rule	Rule E(u) Choice (%) Choice+Lookup (%)										
Altruistic	17.11	8.9	2.2								
Pessimistic	20.93	0	4.5								
Naïve	21.38	22.7	44.8								
Optimistic	21.38	0	2.2								
L2	24.87	44.2	44.1								
D1	24.13	19.5	0								
D2	23.95	0	0								
Equilibrium	24.19	5.2	0								
Sophisticated	24.93	0	2.2								

 Level-k Theory: CGCB (2001) Result 3: Information Search Patterns 										
Subject /	t own p	ayoff	\leftrightarrow other	payoff						
Rule	Predicted	Actual	Predicted	Actual						
TS (Equil.)	>31	63.3	>31	69.3						
Equilibrium	>31	21.5	>31	79.0						
Naïve/Opt.	<31	21.1	-	48.3						
Altruistic	<31	21.1	-	60.0						
L2	>31	39.4	=31	30.3						
D1	>31	28.3	>31	61.7						

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

• 2-Person (p-Beauty Contest) Guessing Games

- Player 1's guesses between [300,500], target = 0.7
- Player 2's guesses between [100,900], target = 1.5
 0.7 x 1.5 = 1.05 > 1...
- Unique Equilibrium at upper bound (500, 750)
- In general:
- Target1 x Target > 1: Nash at upper bounds
- Target1 x Target < 1: Nash at lower bounds

••••

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- Define Various Types:
- Equilibrium (EQ): BR to Nash (play Nash)
- Defining L0 as uniformly random
- Based on evidence from past normal-form games
- Level-k types L1, L2, and L3:
- L1: BR to L0
- L2: BR to L1
- L3: BR to L2

Leve	el-k ⁻	Theo	ory: C	CGC(AER	06')	
Game	L1	L2	L3	D1	D2	EQ	SOPH
14. β4γ2	600	525	630	600	611.25	750	630
6. δ3γ4	520	650	650	617.5	650	650	650
7. δ3δ3	780	900	900	838.5	900	900	900
11. δ2β3	350	546	318.5	451.5	423.15	300	420
16. α4α2	450	315	472.5	337.5	341.25	500	375
1. α2β1	350	105	122.5	122.5	122.5	100	122
15. α2α4	210	315	220.5	227.5	227.5	350	262
13. γ2β4	350	420	367.5	420	420	500	420
5. γ4δ3	500	500	500	500	500	500	500
4. γ2β1	350	300	300	300	300	300	300
10. α4β1	500	225	375	262.5	262.5	150	300
8. δ3δ3	780	900	900	838.5	900	900	900
12. β3δ2	780	455	709.8	604.5	604.5	390	695
3. β1γ2	200	175	150	200	150	150	162
2. β1α2	150	175	100	150	100	100	132
9. β1α4	150	250	112.5	162.5	131.25	100	187

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- Dominance types:
 - D1: Does one round of dominance and BR to a uniform prior over partner's remaining decisions
- D2: Does two rounds and BR to a uniform prior
- Sophisticated (SOPH): BR to empirical distribution of others' decisions
 - Ideal type (if all SOPH, coincide with Equilibrium)
 - See if anyone has a "transcended" understanding of others' decisions

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- No Dk types
- No SOPH types
- No L0 (only in the minds of L1...)
- Deviation from Equilibrium is "cognitive"
- Cannot distinguish/falsify Cognitive Hierarchy
 - BR against lower types, not just L(k-1)
- But distribution is not Poisson (against CH)
 - Is the Poisson assumption crucial?

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- 5 small clusters; total = 11 of 88 subjects
- Other clusters?
 - Could find more smaller clusters in a larger sample, but size smaller than 2/88 (~2%)
- Smaller clusters could be treated as errors
 - No point to build one model per subject...
 - A model for only 2% of population is not general enough to make it worth the trouble

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- Pseudotypes: Constructed with subject's guesses in the 16 games. (Pseudo-1 ~ 88)
- Specification Test: Compare the likelihood of subject's type with likelihoods of pseudotypes
 - Should beat at least 87/8 = 11 pseudotypes
 - Unclassified if failed
- Omitted Type Test: Find clusters that
 - (a) Look like each other, but (b) not like others
 - Pseudotype likelihoods high within, low outside

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- The Level-k model explains a large fraction of subjects' deviations from equilibrium (that can be explained by a model)
- Although the model explains only half or a bit more of subjects' deviations from equilibrium,
- it may still be optimal for a modeler to treat the rest of the deviations as errors
 - Since the rest is not worth modeling...

How Level-k Reasoning Explain Hide-and-Seek Games?

- Aggregate RTH Hide-and-Seek Game Results:
- Both Hiders and Seekers over-choose central A
- Seekers central A even more than hiders

	Α	В	A	Α
Hiders (624)	0.2163	0.2115	0.3654	0.2067
Seekers (560)	0.1821	0.2054	0.4589	0.1536

Hide-and-Seek Games: Anchoring Type Level-0

- *L0* Hiders and Seekers are symmetric
 - Favor salient locations equally
- Favor "B": choose with probability q > 1/4
- Favor "end A": choose with probability p/2 > 1/4
 - Choice probabilities: (p/2, q, 1-p-q, p/2)
- Note: Specification of the Anchoring Type *L0* is key to model's explanatory power
 - See Crawford and Ireberri (AER 2007) for other L0
 - Can't use uniform L0 (coincide with equilibrium)...

- Can a strategic theory explain this?
- Level-k: Each role is filled by *Lk* types: *L0*, *L1*, *L2*, *L3*, or *L4* (probabilities to be estimated...)
 - Note: In Hide and Seek the types cycle after L4...
- High types anchor beliefs in a naïve *L0* type and adjusts with iterated best responses:
 - L1 best responds to L0 (with uniform errors)
 - L2 best responds to L1 (with uniform errors)
 - Lk best responds to Lk-1 (with uniform errors)

	de-a awfo						200	07)					
	 More (or less) attracted to B: p/2 < q (p/2 > q) L2 Seekers choose central A for sure 												
	ABLE 2—TYPES							> 1/2 and q >	> 1/4				
Hider	Expected payoff	Choice probability	Expected payoff	Choice probability	Seeker	Expected payoff	Choice probability	Expected payoff	Choice probability				
L0 (Pr. r)	– Mor	e B -	Les	s B -	$\frac{1}{L0(\text{Pr. }r)}$	Mor	e B -	Les	s B -				
A B A A		p/2 q 1-p-q p/2	-	p/2 q 1-p-q p/2	A B A A	Ξ	p/2 q 1-p-q p/2		p/2 q 1-p-q p/2				
LI (Pr. s) A	1 - p/2 < 3/4 1 - q < 3/4		1 - p/2 < 3/4 1 - q < 3/4	0	Ll (Pr. s) A B	p/2 > 1/4 q > 1/4	0 1	p/2 > 1/4 q > 1/4	1/2 0				
A A L2 (Pr. t)	p + q > 3/4 1 - p/2 < 3/4	0	p + q > 3/4 1 - p/2 < 3/4	0	A A 1.2 (Pr. t)	1-p-q < 1/4 p/2 > 1/4	0	1 - p - q < 1/4 p/2 > 1/4	1/2				
A B A	1 0 1	1/3 0 1/3	1/2 1 1	0 1/2 1/2	A B A	0 0 1		0 0 1					
A	1	1/3	1/2	0	А	0	0	0	0				

Hide-and-Seek Games: Out of Sample Prediction

- Estimate on one treatment and predict other five treatments
 - 30 Comparisons: 6 estimations, each predict 5
- This Level-k Model with symmetric *L0* beats other models (LQRE, Nash + noise)
 - Mean Squared prediction Error (MSE) 18% lower
 - Better predictions in 20 of 30 comparisons

Hide-and-Seek Level-k Model Ported to the Joker Game

- Can Level-k Reasoning developed from the Hide-and-Seek Game predict results of other games?
 - Try O'Neil (1987)'s Joker Game
- Stylized Facts:
 - Aggregate Frequencies close MSE
 - Ace Effect (A chosen more often than 2 or 3);
 - Not captured by QRE

Hide-and-Seek Level-k Model Ported to the Joker Game

- Level-*k* model with symmetric *L0* (favor A&J)
- Choice of L0: (a (1-a-j)/2 (1-a-j)/2 j), a, $j > \frac{1}{4}$
 - "A and J, 'face' cards and end locations, are more salient than 2 and 3..."
- Higher *Lk* types BR to *L(k-1)*
 - Table A3 and A4 of CI's online appendix
- Challenge: To get the Ace Effect (without L0), we need a population of almost all L4 or L3
 - This is an empirical question, but very unlikely...

Table 5. Comparison of the Leading Models in O'Neill's Game											
Model	Parameter estimates		MSE								
		Player	А	2	3	J					
Observed frequencies		1	0.0800	0.2400	0.1200	0.5600	-				
(25 Player 1s, 25 Player 2s)		2	0.1600	0.1200	0.0800	0.6400	-				
Equilibrium without		1	0.2000	0.2000	0.2000	0.4000	0.0120				
perturbations		2	0.2000	0.2000	0.2000	0.4000	0.0200				
Level-k with a role-symmetric	a > 1/4 and $j > 1/4$	1	0.0824	0.1772	0.1772	0.5631	0.0018				
L0 that favors salience	3j-a<1,a+2j<1	2	0.1640	0.1640	0.1640	0.5081	0.0066				
Level-k with a role-symmetric	a > 1/4 and $j > 1/4$	1	0.0000	0.2541	0.2541	0.4919	0.0073				
L0 that favors salience	3j-a<1,a+2j>1	2	0.2720	0.0824	0.0824	0.5631	0.0050				
Level-k with a role-symmetric	a < 1/4 and $j < 1/4$	1	0.4245	0.1807	0.1807	0.2142	0.0614				
L0 that avoids salience		2	0.1670	0.1807	0.1807	0.4717	0.0105				
Level-k with a role-asymmetric L0 that favors salience for locations for which	$\begin{array}{c} a_1 \! < \! 1/4, j_1 \! > \! 1/4; \\ a_2 \! > \! 1/4, j_2 \! < \! 1/4 \end{array}$	1	0.1804	0.2729	0.2729	0.2739	0.0291				
player is a seeker and avoids it for locations for which player is a hider	$\begin{array}{c} 3j_{1} \text{-} a_{1} < 1, a_{1} \text{+} 2j_{1} < 1, \\ 3a_{2} \text{+} j_{2} > 1 \end{array}$	2	0.1804	0.1804	0.1804	0.4589	0.0117				

Hide-and-Seek Level-k Model Ported to the Joker Game

- Could there be no Ace Effect in the initial rounds of O'Neil's data?
 - The Level-k model predicts a Joker Effect instead!
- Crawford and Ireberri asked for O'Neil's data
 And they found...
- Initial Choice Frequencies
 - (A, 2, 3, J) = (8%, 24%, 12%, 56%) for Player 1
 - (A, 2, 3, J) = (16%, 12%, 8%, 64%) for Player 2

....

....

Applications

- *p*-Beauty Contest:
 - Costa-Gomes and Crawford (AER 2006)
 - Chen, Huang and Wang (mimeo 2010)
- MSE:
 - Hide-and-Seek: Crawford and Iriberri (AER 2007)
 - LUPI: Ostling, Wang, Chou and Camerer (2010)
- Auctions:
 - Overbidding: Crawford and Iriberri (AER 2007)
 - Repeated eBay Auctions: Wang (2006)

More Applications

- Coordination-Battle of the Sexes (Simple Market Entry Game):
 - Camerer, Ho and Chong (QJE 2004)
 - Crawford (2007)
- Pure Coordination Games:
 - Crawford, Gneezy and Rottenstreich (AER 2008)
- Pre-play Communication:
 - Crawford (AER 2003)
 - Ellingsen and Ostling (2010)

More Applications

- Strategic Information Communication:
 - Crawford (AER 2003)
 - Cai and Wang (GEB 2006)
 - Kawagoe and Takizawa (GEB 2008)
 - Wang, Spezio and Camerer (AER 2010)
 - Brown, Leveno and Camerer (mimeo?)
- Problems of Level-k:
 - Georganas, Healy, and Weber(mimeo 2010)

