

Outline

- Introduction: "Initial" Deviations from MSE
- Hide-and-Seek: Crawford \& Iriberri (AER 2007)
- Initial Joker Effect: Re-asssessing O'Neil (1987)
- Simultaneous Dominant Solvable Games
- Price competition: Capra et al (IER 02')
- Traveler's dilemma: Capra et al (AER 99')
- p-Beauty Contest: Nagel (AER 95'), CHW (AER 98')
- Level-k Theory:
- Stahl-Wilson (GEB95'), CGCB (ECMA01')
- Costa-Gomes \& Crawford (AER06')

Hide-and-Seek Games (with Non-neutral Location Framing)

- RTH: Rubinstein \& Tversky (1993); Rubinstein, Tversky, \& Heller (1996); Rubinstein $(1998,1999)$
- Your opponent has hidden a prize in one of four boxes arranged in a row.
- The boxes are marked as shown below: A, B, A, A.

A	B	A

Hide-and-Seek Games (with Non-neutral Location Framing)

- RTH (Continued):
- Your goal is, of course, to find the prize.
- His goal is that you will not find it.
- You are allowed to open only one box.
- Which box are you going to open?
$A B A$

Hide-and-Seek Games (with Non-neutral Location Framing)

$\because \because{ }^{\circ}$

- Folk Theory: "...in Lake Wobegon, the correct answer is usually 'c'."
- Garrison Keillor (1997) on multiple-choice tests
- Comment on the poisoning of Ukrainian presidential candidate (now president):
- "Any government wanting to kill an opponent ...would not try it at a meeting with government officials."
- Viktor Yushchenko, quoted in Chivers (2004)

Hide-and-Seek Games (with Non-neutral Location Framing)

- " B " is distinguished by its label
- The two "end A " may be inherently salient
- This gives the "central A" location its own brand of uniqueness as the "least salient" location

Hide-and-Seek Games (with Non-neutral Location Framing)

- RTH's game has a unique equilibrium, in which both players randomize uniformly
- Expected payoffs: Hider 3/4, Seeker 1/4

Hider/Seeker	A	B	A	A
A	0,1	1,0	1,0	1,0
B	1,0	0,1	1,0	1,0
A	1,0	1,0	0,1	1,0
A	1,0	1,0	1,0	0,1

Hide-and-Seek Games (with Non-neutral Location Framing)

- All Treatments in RTH:
- Baseline: ABAA ("Treasure")
- Variants:
- Left-Right Reverse: AABA
- Labeling: 1234 (2 is like "B", 3 is like "central A")
- Mine Treatments
- Hider hides a mine in 1 location, and Seeker wants to avoid the mine (payoffs reversed)
- "mine hiders" = seekers, "mine seekers" = hiders

Hide-and-Seek Games:
Aggregate Frequencies of RTH

RTH-4	\mathbf{A}	\mathbf{B}	\mathbf{A}	\mathbf{A}
Hider (53)	9%	36%	40%	15%
Seeker (62)	13%	31%	45%	11%
RT-AABA-Treasure	\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{A}
Hider (189)	22%	35%	19%	25%
Seeker (85)	13%	51%	21%	15%
RT-AABA-Mine	\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{A}
Hider (132)	24%	39%	18%	18%
Seeker (73)	29%	36%	14%	22%
RT-1234-Treasure	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Hider (187)	25%	22%	36%	18%
factized				
Seeker (84)	20%	18%	48%	14%
RT-1234-Mine	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Hider (133)	18%	20%	44%	17%
Seeker (72)	19%	25%	36%	19%
R-ABAA	\mathbf{A}	\mathbf{B}	\mathbf{A}	\mathbf{A}
Hider (50)	16%	18%	44%	22%
Seeker (64)	16%	19%	54%	11%

Hide-and-Seek Games: Stylized Facts

- Central A (or 3) is most prevalent for both Hiders and Seekers
- Central A is even more prevalent for Seekers (or Hiders in Mine treatments)
- As a result, Seekers do better than in equilibrium
- Shouldn't Hiders realize that Seekers will be just as tempted to look there?
- RTH: "The finding that both choosers and guessers selected the least salient alternative suggests little or no strategic thinking."

Hide-and-Seek Games: Explaining the stylized facts

- Can a strategic theory explain this?
- Heterogeneous population with substantial frequencies of L2 and L3 as well as L1 (estimated 19\% L1, 32\% L2, 24\% L3, 25\% L4) can reproduce the stylized facts
- More on Level-k later...
- Let's first see more evidence in DS Games...

Simultaneous Dominant Solvable (DS) Games

- Initial Response vs. Equilibration
- Price Competition
- Capra, Goeree, Gomez and Holt (IER 2002)
- Traveler's Dilemma
- Capra, Goeree, Gomez and Holt (AER 1999)
- p-Beauty Contest
- Nagel (AER 1995)
- Camerer, Ho, Weigelt (AER 1998)

Price Competition

- Capra, Goeree, Gomez \& Holt (IER 2002)
- Two firms pick prices $p_{1} \& p_{2}$ from $\$ 0,60 \sim \$ 1.60$
- Both get $(1+a)^{*} p_{1} / 2$ if tied; but if $p_{1}<p_{2}$
- Low-price firm gets $1 * p_{1}$; other firm gets $a^{*} p_{1}$
- $a=$ responsiveness to "best price" ($=0.2 / 0.8$)
- $a \rightarrow 1$: "Meet-or-release" (low price guarantees)
- $a<1$: Bertrand competition predicts lowest price

Price Competition: Data

Price Competition: Simulation

Figure 4
simulated average prices obtaned from 1000 simulations (dark lines) ± 2 standard deviations (dotted lines) and a typcal run (lines connecting seuares)

Traveler's Dilemma

- Capra, Goeree, Gomez \& Holt (AER 1999)
- Two travelers state claim p_{1} and $p_{2}: 80 \sim 200$
- Airline awards both the minimum claim, but
- reward R to the one who stated the lower claim
- penalize the other by R
- Unique NE: race to the bottom \rightarrow lowest claim
- Like price competition game or p-beauty contest

Traveler's Dilemma: Data

p-Beauty Contest

- Each of N players choose x_{i} from $[0,100]$
- Target is p^{*} (average of x_{i})
- Closest x_{i} wins fixed prize
- $(67,100]$ violates $1^{\text {st }}$ order dominance
- $(45,67$] obeys 1 step (not 2) of dominance
- Nagel (AER 1995):
- Next 2 slides
- Ho, Camerer and Weigelt (AER 1998)
- BGT, Figure 1.3, 5.1

Nagel (AER 1995):
Figure 1A-p=1/2

p-Beauty Contest Game

- Named after Keynes, General Theory (1936)
- "...professional investment may be likened to those newspaper competitions in which the competitors have to pick out the six prettiest faces from a hundred photographs,

Nagel (AER 1995):

Figure 1B - $p=2 / 3$

p-Beauty Contest Game

- the prize being awarded to the competitor whose choice most nearly corresponds to the average preferences of the competitors as a whole...."

p-Beauty Contest Game

p-Beauty Contest Game

- We have reached the third degree where we devote our intelligences to...
- anticipating what average opinion expects the average opinion to be.
- And there are some, I believe, who practice the fourth, fifth and higher degrees."
- Keynes, General Theory, 1936, pp. 155-56

Camerer, Ho and Weigelt (AER 1998): Design

Camerer, Ho and Weigelt (AER 1998): Design

Group size	
3	7
Finite \rightarrow Infinite	
$F T(1.3,3) \rightarrow I T(0.7,3)$	$F T(1.3,7) \rightarrow I T(0.7,7)$
(7 groups)	(7 groups)
$F T(1.1,3) \rightarrow I T(0.9,3)$	$F T(1.1,7) \rightarrow I T(0.9,7)$
(7 groups)	(7 groups)
Infinite \rightarrow Finite	
$I T(0.7,3) \rightarrow F T(1.3,3)$	$I T(0.7,7) \rightarrow F T(1.3,7)$
(7 groups)	(7 groups)
$I T(0.9,3) \rightarrow F T(1.1,3)$	$I T(0.9,7) \rightarrow F T(1.1,7)$
(6 groups)	(7 groups)

Camerer, Ho and Weigelt (AER 1998)

Camerer, Ho and Weigelt (AER 1998)

Camerer, Ho and Weigelt (AER 1998)

- RESULT 3:

Choices are closer to equilibrium for large (7person) groups than for small (3-person) groups.

- More on 7-group vs. 3-group...

Camerer, Ho and Weigelt (AER 1998)

Camerer, Ho and Weigelt (AER 1998)

- Classification of Types
- Follow Stahl and Wilson (GEB 1995)
- Level-0: pick randomly from $\mathrm{N}(\mathrm{mu}$, sigma)
- Level-1: BR to level-0 with noise
- Level-2: BR to level-1 with noise
- Level-3: BR to level-2 with noise
- Estimate type, error using MLE

Table 3-Maximum-Likelihood Estimates and Log-Likelihoods for Level.S Maximum-Likelihood Estimates and Log-Likellhoods
of Iterated Dominance (First-Round Data Only)

Parameter estimates	$\begin{gathered} \text { Out data } \\ \text { (groups of } 3 \text { or } 7 \text {) } \end{gathered}$		$\begin{gathered} \text { Nagel's data } \\ \text { (groups of 16-18) } \end{gathered}$	
	$I T(p, n)$	$F T(p, n)$	$I T(0.5, n)$	$I T(2 / 3, n)$
ω_{0}	15.93	21.72	45.83 (23.94)	28.36 (13.11)
ω_{1}	20.74	31.46	37.50 (29.58)	34.33 (44.26)
	13.53	12.73	16.67 (40.84)	37.31 (39.34)
ω_{3}	49.50	34.08	0.00 (5.63)	0.00 (3.28)
	70.13	100.50	35.53 (50.00)	52.23 (50.00)
σ	28.28	26.89	22.70	14.72
ρ	1.00	1.00	0.24	1.00
-LL	1128.29	1057.28	168.48	243.95

Type distribution...

Camerer, Ho and Weigelt (AER 1998)

- Robustness checks:
- High stakes (Fig.1.3 - small effect lowering numbers)
- Median vs. Mean (Nagel 99' - same): BGT Figure 5.1
- p^{*} (Median +18): equilibrium inside
- Subject Pool Variation:
- Portfolio managers
- Econ PhD, Caltech undergrads
- Caltech Board of Trustees (CEOs)
- Readers of Financial Times and Expansion
- Experience vs. Inexperience (for the same game)
- Slonim (EE 2005) - Experience good only for $1^{\text {st }}$ round

Level-k Theory: Stahl and Wilson (GEB 1995)

Level-k Theory: Stahl and Wilson (GEB 1995)

table iv

- Stahl and Wilson (GEB 1995)
- Level-0: Random play
- Level-1: BR to Random play
- Level-2: BR to Level-1
- Nash: Play Nash Equilibrium
- Worldly: BR to distribution of Level-0, Level-1 and Nash types

Parameter Estimates and Confidence Intervals for Mixture Model without RE Types				
	Estimate	Std. Dev.	95 perce	conf. int.
γ_{1}	0.2177	0.0425	0.1621	0.3055
μ_{2}	0.4611	0.0616	$\begin{gathered} 0.2014 \\ {[0.2360} \end{gathered}$	$\begin{aligned} & 0.8567 \\ & 0.8567] \end{aligned}$
γ_{2}	3.0785	0.5743	$\begin{aligned} & 1.9029 \\ & {[2.5631} \end{aligned}$	$\begin{aligned} & 4.9672 \\ & 5.0000 \end{aligned}$
7_{3}	4.9933	0.9357	1.9964	5.0000
μ_{4}	0.0624	${ }^{0.0063}$	0.0527	0.0774
ϵ_{4}	${ }^{0.4411}$	${ }^{0.0773}$	${ }^{0.2983}$	${ }^{0.5882}$
γ_{4}	0.3326	0.0549	0.2433	0.4591
α_{0}	0.1749	0.0587	0.0675	0.3047
α_{1}	0.2072	0.0575	0.1041	0.3298
α_{2}	0.0207	0.0202	0.0000	0.0625
α_{3}		0.0602	0.0600	0.2957
α_{4}	0.4306	0.0782	0.2810	0.5723
\mathcal{L}	-442.727			Type dist

Level-k Theory: Costa-Gomes, Crawford and Broseta (Econometrica 2001)

- 18 "2-player NF games" designed to separate:
- Naïve (L1), Altruistic (max sum)
- Optimistic (maximax), Pesimistic (maximin)
- L2 (BR to L1)
- D1/D2 (1/2 round of DS deletion)
- Sophisticated (BR to empirical)
- Equilibrium (play Nash)

Level-k Theory: CGCB (Econometrica 2001)

- Three treatments (all no feedback):
- Baseline (B)
- Mouse click to open payoff boxes
- Open Box (OB)
- Payoff boxes always open
- Training (TS)
- Rewarded to choose equilibrium strategies

Level-k Theory: CGCB (Econometrica 2001)

- Results 1: Consistency of Strategies with Iterated Dominance
- B, OB: $90 \%, 65 \%, 15 \%$ equilibrium play
- For Equilibria requiring 1, 2, 3 levels of ID
- TS: 90-100\% equilibrium play
- For all levels
- Game-theoretic reasoning is not computationally difficult, but unnatural.

Level-k Theory: CGCB (2001)

- Result 2: Estimate Subject Decision Rule

Rule	$\mathrm{E}(\mathrm{u})$	Choice (\%)	Choice+Lookup (\%)
Altruistic	17.11	8.9	2.2
Pessimistic	20.93	0	4.5
Naïve	21.38	22.7	74.8
Optimistic	21.38	0	2.2
L2	24.87	44.2	44.1
D1	24.13	19.5	0
D2	23.95	0	0
Equilibrium	24.19	5.2	0
Sophisticated	24.93	0	2.2

Level-k Theory: CGCB (2001)

- Result 3: Information Search Patterns

Subject $/$	\uparrow own payoff		\leftrightarrow other payoff	
Rule	Predicted	Actual	Predicted	Actual
TS (Equil.)	>31	63.3	>31	69.3
Equilibrium	>31	21.5	>31	79.0
Naïve/Opt.	<31	21.1	-	48.3
Altruistic	<31	21.1	-	60.0
L2	>31	39.4	$=31$	30.3
D1	>31	28.3	>31	61.7

Level-k Theory: CGCB (Econometrica 2001)

- Result 3: Information Search Patterns
- Occurrence (weak requirement)
- All necessary lookups exist somewhere
- Adjacency (strong requirement)
- Payoffs compared by rule occur next to each other
- H-M-L: \% of Adjacency | 100\% occurrence

Level-k Theory: (Poisson) Cognitive Hierarchy

- Camerer, Ho and Chong (QJE 2004)
- Frequency of level-k thinkers is $f(k \mid \tau)$
- $\tau=$ mean number of thinking steps
- Level-0: choose randomly or use heuristics
- Level-k thinkers use k steps of thinking BR to a mixture of lower-step thinkers
- Belief about others is Truncated Poisson
- Easy to compute; Explains many data

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- 2-Person (p-Beauty Contest) Guessing Games
- Player 1's guesses between [300,500], target $=0.7$
- Player 2's guesses between [100,900], target $=1.5$
- $0.7 \times 1.5=1.05>1$...
- Unique Equilibrium at upper bound $(500,750)$
- In general:
- Target1 \times Target > 1: Nash at upper bounds
- Target1 x Target < 1: Nash at lower bounds

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- 16 Different Games
- Limits:
- " α " $=[100,500], " \beta "=[100,900]$,
- " γ " $=[300,500], " \delta "=[300,900]$
- Target: " 1 " = 0.5, " 2 " = 0.7, " 3 " = 1.3, " $4 "=1.5$
- No feedback - Elicit Initial Responses

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- Define Various Types:
- Equilibrium (EQ): BR to Nash (play Nash)
- Defining L0 as uniformly random
- Based on evidence from past normal-form games
- Level-k types L1, L2, and L3:
- L1: BR to L0
- L2: BR to L1
- L3: BR to L2

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- Dominance types:
- D1: Does one round of dominance and BR to a uniform prior over partner's remaining decisions
- D2: Does two rounds and BR to a uniform prior
- Sophisticated (SOPH): BR to empirical distribution of others' decisions
- Ideal type (if all SOPH, coincide with Equilibrium)
- See if anyone has a "transcended" understanding of others' decisions

Level-k Theory: CGC(AER 06’)

Game	L1	L2	L3	D1	D2	EQ	SOPH
14. $\beta 4 \gamma 2$ 2	600	525	630	600	611.25	750	630
6. $\delta 3 \gamma 4$	520	650	650	617.5	650	650	650
7. $\delta 383$	780	900	900	838.5	900	900	900
11. $\delta 2 \beta 3$	350	546	318.5	451.5	423.15	300	420
16. $\alpha 4 \alpha 2$	450	315	472.5	337.5	341.25	500	375
1. $\alpha 2 \beta 1$	350	105	122.5	122.5	122.5	100	122
15. $\alpha 2 \alpha 4$	210	315	220.5	227.5	227.5	350	262
13. $\gamma 2 \beta 4$	350	420	367.5	420	420	500	420
5. $\gamma 4 \delta 3$	500	500	500	500	500	500	500
4. $\gamma 2 \beta 1$	350	300	300	300	300	300	300
10. $\alpha 4 \beta 1$	500	225	375	262.5	262.5	150	300
8. $\delta 383$	780	900	900	838.5	900	900	900
12. $\beta 382$	780	455	709.8	604.5	604.5	390	695
3. $\beta 1 \gamma 2$	200	175	150	200	150	150	162
2. $\beta 1 \alpha 2$	150	175	100	150	100	100	132
9. $\beta 1 \alpha 4$	150	250	112.5	162.5	131.25	100	187

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- 43 (out of 88) subjects in the baseline made exact guesses ($+/-0.5$) in 7 or more games
- Distribution: (L1, L2, L3, EQ) $=(20,12,3,8)$
table 1-Summary of baseline and ob Subiects' Estmated Type Distributions

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- No Dk types
- No SOPH types
- No L0 (only in the minds of L1...)
- Deviation from Equilibrium is "cognitive"
- Cannot distinguish/falsify Cognitive Hierarchy
- BR against lower types, not just L(k-1)
- But distribution is not Poisson (against CH)
- Is the Poisson assumption crucial?

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- 5 small clusters; total $=11$ of 88 subjects
- Other clusters?
- Could find more smaller clusters in a larger sample, but size smaller than 2/88 (~2\%)
- Smaller clusters could be treated as errors
- No point to build one model per subject...
- A model for only 2% of population is not general enough to make it worth the trouble

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- Pseudotypes: Constructed with subject's guesses in the 16 games. (Pseudo-1 ~ 88)
- Specification Test: Compare the likelihood of subject's type with likelihoods of pseudotypes
- Should beat at least $87 / 8=11$ pseudotypes
- Unclassified if failed
- Omitted Type Test: Find clusters that
- (a) Look like each other, but (b) not like others
- Pseudotype likelihoods high within, low outside

Level-k Theory: Costa-Gomes and Crawford (AER 2006)

- The Level-k model explains a large fraction of subjects' deviations from equilibrium (that can be explained by a model)
- Although the model explains only half or a bit more of subjects' deviations from equilibrium,
- it may still be optimal for a modeler to treat the rest of the deviations as errors
- Since the rest is not worth modeling...

How Level-k Reasoning Explain Hide-and-Seek Games?

- Aggregate RTH Hide-and-Seek Game Results:
- Both Hiders and Seekers over-choose central A
- Seekers central \boldsymbol{A} even more than hiders

	\mathbf{A}	\mathbf{B}	\mathbf{A}	\mathbf{A}
Hiders (624)	0.2163	0.2115	$\mathbf{0 . 3 6 5 4}$	0.2067
Seekers (560)	0.1821	0.2054	$\mathbf{0 . 4 5 8 9}$	0.1536

Hide-and-Seek Games: Crawford \& Ireberri (AER 2007)

- Can a strategic theory explain this?
- Level-k: Each role is filled by $L k$ types: $L 0, L 1$, $L 2$, $L 3$, or $L 4$ (probabilities to be estimated...)
- Note: In Hide and Seek the types cycle after L4...
- High types anchor beliefs in a naïve $L 0$ type and adjusts with iterated best responses:
- L1 best responds to $L 0$ (with uniform errors)
- L2 best responds to L1 (with uniform errors)
- Lk best responds to $L k-1$ (with uniform errors)

Hide-and-Seek Games: Anchoring Type Level-0

- LO Hiders and Seekers are symmetric
- Favor salient locations equally
- Favor "B": choose with probability $q>1 / 4$
- Favor "end A": choose with probability p/2>1/4
- Choice probabilities: (p/2, q, 1-p-q, p/2)
- Note: Specification of the Anchoring Type LO is key to model's explanatory power
- See Crawford and Ireberri (AER 2007) for other LO
- Can't use uniform LO (coincide with equilibrium)...

Hide-and-Seek Games:

Crawford \& Ireberri (AER 2007)

- More (or less) attracted to $\mathrm{B}: \mathrm{p} / 2<\mathrm{q}(\mathrm{p} / 2>\mathrm{q})$
- L1 Seekers avoid central A (pick B or end A)

Hide-and-Seek Games: Crawford \& Ireberri (AER 2007)

- More (or less) attracted to B: $\mathrm{p} / 2<\mathrm{q}(\mathrm{p} / 2>\mathrm{q})$
- L2 Hiders choose central A with prob. in [0,1]

Hide-and-Seek Games: Crawford \& Ireberri (AER 2007)

- More (or less) attracted to B: $\mathrm{p} / 2<\mathrm{q}(\mathrm{p} / 2>\mathrm{q})$
- L2 Seekers choose central A for sure

Hide-and-Seek Games: Explaining the stylized facts

- Given LO playing (p/2, q, 1-p-q, p/2),
- L1 Hiders choose central A (avoid LO Seekers)
- L1 Seekers avoid central A (search for LO Hiders)
- L2 Hiders choose central A with prob. in $[0,1]$
- L2 Seekers choose central A for sure
- L3 Hiders avoid central A
- L3 Seekers choose central $A \mathrm{w} / \mathrm{prob}$. in $[0,1]$
- L4 Hiders and Seekers both avoid central A

Hide-and-Seek Games: Explaining the stylized facts

- Heterogeneous Population (L0, L1, L2, L3, L4) $=(\mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v})$ with $\mathrm{r}=0, \mathrm{t}, \mathrm{u}$ large and s "not too large" can reproduce the stylized facts
- Need $\mathrm{s}<(2 \mathrm{t}+\mathrm{u}) / 3$ (More B) or $\mathrm{s}<(\mathrm{t}+\mathrm{u}) / 2$ (Less B)
- estimated $\mathrm{r}=0, \mathrm{~s}=19 \%, \mathrm{t}=32 \%, \mathrm{u}=24 \%, \mathrm{v}=25 \%$

Hide-and-Seek Level-k Model Ported to the Joker Game

- Can Level-k Reasoning developed from the Hide-and-Seek Game predict results of other games?
- Try O'Neil (1987)'s Joker Game
- Stylized Facts:
- Aggregate Frequencies close MSE
- Ace Effect (A chosen more often than 2 or 3);
- Not captured by QRE

Hide-and-Seek Games: Out of Sample Prediction

- Estimate on one treatment and predict other five treatments
- 30 Comparisons: 6 estimations, each predict 5
- This Level-k Model with symmetric $L O$ beats other models (LQRE, Nash + noise)
- Mean Squared prediction Error (MSE) 18\% lower
- Better predictions in 20 of 30 comparisons

The Joker Game: O'Neill (1987)

	A	2	3	J	MSE	Actual	QRE
A	-5	5	5	-5	0.2	0.221	0.213
2	5	-5	5	-5	0.2	0.215	0.213
3	5	5	-5	-5	0.2	0.203	0.213
J	-5	-5	-5	5	0.4	0.362	0.360
MSE	0.2	0.2	0.2	0.4	• Actual frequencies are quite close to MSE		
Actual	0.226	0.179	0.169	0.426		QRE better, but can't	
QRE	0.191	0.191	0.191	0.427		Qet the Ace effect	

Hide-and-Seek Level-k Model Ported to the Joker Game

- Level-k model with symmetric $L 0$ (favor A\&J)
- Choice of LO: $(\mathrm{a}(1-\mathrm{a}-\mathrm{j}) / 2(1-\mathrm{a}-\mathrm{j}) / 2 \mathrm{j}), \mathrm{a}, \mathrm{j}>1 / 4$
- "A and J, 'face' cards and end locations, are more salient than 2 and 3..."
- Higher $L k$ types BR to $L(k-1)$
- Table A3 and A4 of Cl's online appendix
- Challenge: To get the Ace Effect (without LO), we need a population of almost all L4 or L3
- This is an empirical question, but very unlikely...

Model	Parameter stimates	Observed or predicted choice frequencies					MSE
		Player	A	2	3	J	
Observed frequencies (25 Player 1s, 25 Player 2 s)			$\begin{aligned} & 0.0800 \\ & 0.1600 \end{aligned}$	$\begin{aligned} & 0.2400 \\ & 0.1200 \end{aligned}$	$\begin{aligned} & 0.1200 \\ & 0.0800 \end{aligned}$	$\binom{0.5600}{0.6400}$	
Equilibrium without perturbations		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.2000 \\ & 0.2000 \end{aligned}$	$\begin{aligned} & 0.2000 \\ & 0.2000 \end{aligned}$	$\begin{aligned} & 0.2000 \\ & 0.2000 \end{aligned}$	$\begin{aligned} & 0.4000 \\ & 0.4000 \end{aligned}$	$\begin{aligned} & 0.0120 \\ & 0.0200 \end{aligned}$
Level- k with a role-symmetric $L O$ that favors salience	$\begin{gathered} a>1 / 4 \text { and } j>1 / 4 \\ 3 j-a<1, a+2 j<1 \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 0.0824 \\ & 0.1640 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1772 \\ & 0.1640 \end{aligned}$	$\begin{aligned} & 0.1772 \\ & 0.1640 \end{aligned}$	$\binom{0.563}{0.5081}$	$\left(\begin{array}{c} 0.0018 \\ 0.0066 \end{array}\right.$
Level- k with a role-symmetric LO that favors salience	$\begin{aligned} & a>1 / 4 \text { and } j>1 / 4 \\ & 3 j-a<1, a+2 j>1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 0.0000 \\ & 0.2720 \end{aligned}$	$\begin{aligned} & \hline 0.2541 \\ & 0.0824 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.2541 \\ & 0.0824 \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 0.4919 \\ 0.563 \end{array}\right)$	$\begin{array}{\|l\|} \hline 0.0073 \\ .0055 \\ \hline \end{array}$
Level- k with a role-symmetric $L O$ that avoids salience	$a<1 / 4$ and $j<1 / 4$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 0.4245 \\ & 0.1670 \end{aligned}$	$\begin{aligned} & \hline 0.1807 \\ & 0.1807 \end{aligned}$	$\begin{aligned} & \hline 0.1807 \\ & 0.1807 \end{aligned}$	$\begin{aligned} & 0.2142 \\ & 0.4717 \end{aligned}$	$\begin{aligned} & 0.0614 \\ & 0.0105 \end{aligned}$
Level- k with a role-asymmetric $L O$ that favors salience for locations for which player is a seeker and avoids it for locations for which player is a hider	$\begin{gathered} a_{1}<1 / 4, j_{1}>1 / 4 ; \\ a_{2}>1 / 4, j_{2}<1 / 4 \\ \\ 3 j_{1}-a_{1}<1, a_{1}+2 j_{1}<1, \\ 3 a_{2}+j_{2}>1 \end{gathered}$	1 2	0.1804 0.1804	0.1804	0.2729 0.1804	0.2739 0.4589	0.0291 0.0117

Hide-and-Seek Level-k Model Ported to the Joker Game

- Could there be no Ace Effect in the initial rounds of O'Neil's data?
- The Level-k model predicts a Joker Effect instead!
- Crawford and Ireberri asked for O'Neil's data
- And they found...
- Initial Choice Frequencies
- $(A, 2,3, J)=(8 \%, 24 \%, 12 \%, 56 \%)$ for Player 1
- $(A, 2,3, J)=(16 \%, 12 \%, 8 \%, 64 \%)$ for Player 2

Conclusion

- Limit of Strategic Thinking: 2-3 steps
- Theory (for initial responses)
- Level-k Types:
- Stahl-Wilson (GEB 1995), CGCB (ECMA 2001)
- Costa-Gomes and Crawford (AER 2006)
- Chen, Huang and Wang (mimeo 2010)
- Cognitive Hierarchy:
- CHC (QJE 2004)

Applications

- p-Beauty Contest:
- Costa-Gomes and Crawford (AER 2006)
- Chen, Huang and Wang (mimeo 2010)
- MSE:
- Hide-and-Seek: Crawford and Iriberri (AER 2007)
- LUPI: Ostling, Wang, Chou and Camerer (2010)
- Auctions:
- Overbidding: Crawford and Iriberri (AER 2007)
- Repeated eBay Auctions: Wang (2006)

More Applications

- Coordination-Battle of the Sexes (Simple Market Entry Game):
- Camerer, Ho and Chong (QJE 2004)
- Crawford (2007)
- Pure Coordination Games:
- Crawford, Gneezy and Rottenstreich (AER 2008)
- Pre-play Communication:
- Crawford (AER 2003)
- Ellingsen and Ostling (2010)

More Applications

- Strategic Information Communication:
- Crawford (AER 2003)
- Cai and Wang (GEB 2006)
- Kawagoe and Takizawa (GEB 2008)
- Wang, Spezio and Camerer (AER 2010)
- Brown, Leveno and Camerer (mimeo?)
- Problems of Level-k:
- Georganas, Healy, and Weber(mimeo 2010)

