Games with Incomplete Information 資訊不全賽局 Joseph Tao-yi Wang 2010/10/8

(Lecture 6, Micro Theory I-2)

Games with Incomplete Information

- One or more players know preferences only probabilistically (cf. Harsanyi, 1976-77)
- Player *i* of Type $t_i \in \mathcal{T}_i = \{1, \cdots, T_i\}$
- Market Entry Game (of Section 9.2)
 - Entrant chooses Enter or Out
 - Incumbent chooses Fight or Share
- Both players choose before knowing how strong is player 1 (entrant)'s financial backing

If Entrant's backing is Weak

Agent 2: Incumbent

If Entrant's backing is Strong

Agent 2: Incumbent

Bayesian Nash Equilibrium (BNE)

- Let $U^i(s;t_i), s \in S$ be the payoffs of player $i \in \mathcal{I}$
- If his type is $t_i \in \mathcal{T}_i = 1, \cdots, T_i$
- Let $f(t_1, \cdots, t_I)$ be the joint distribution over types, which common knowledge. Then, a
- strategy profile is a Bayesian Nash equilibrium
- If player *i*'s strategy is a BR at each decision node that is reached with positive probability
 - given the common knowledge beliefs

Bayesian Nash Equilibrium (BNE)

- As if Nature moves in stage 0 to choose
 - Player types $(t_1, \cdots, t_I) \in \mathcal{T}_1 \times \cdots \times \mathcal{T}_I$
- Nature's payoffs same for all outcomes
- It is a BR to play mixed strategy $f(t_1, \cdots, t_I)$
- BNE of the *I*-player game is NE of the (*I*+1)player game (with Nature moving first)
 - All existence theorems apply...

BNE with Player 2 Choosing *Fight*: BR of Player 2

Empty Threats Off the Equilibrium Path

- If $p \leq 1/2$, Incumbent would not want to *Fight*
- Not a "Sensible" Equilibrium...
- Problem due to "crazy" beliefs that are:
- Off the Equilibrium Path: nodes that are not reached in equilibrium
 - Not reached = Zero probability? Yes here, but not true with continuous types... Comparison:
- On the Equilibrium Path: nodes that are reached in equilibrium

Trembling-Hand Perfect Equilibrium

- To rule out "crazy" equilibrium, can perturb the BNE by making them completely mixed:
 - Consider a game with T stages
- Set of feasible actions at stage t is A_t (finite)
- For the BNE $\overline{\pi} = (\overline{\pi}_1, \cdots, \overline{\pi}_T)$
- Consider a sequence of completely mixed strategies $\{\pi^k\}_{k=1}^\infty \to \overline{\pi}$ (trembles)
 - All nodes are reached (and tested in the BNE)
 - No more "crazy" beliefs off the equilibrium path...

Trembling-Hand Perfect Equilibrium

- A BNE is Trembling-Hand Perfect (THP) if
- There exists some sequence of completely mixed strategy profiles $\{\pi^k\}_{k=1}^\infty$
- Converging to the equilibrium strategies, s. t.
- For all sufficiently large k, the equilibrium strategies are BR
 - Note: If a sequence of Logit QRE converges to a BNE, would the BNE automatically be THP?
 - QRE solves this by construct since it is completely mixed already...

Sequential Equilibrium

- The BNE profile (s_1, \dots, s_n) of the *n* players in a game is a sequential equilibrium if
- Each strategy is a BR at each node
- When beliefs at each node are the limits of beliefs associated with trembles as the probability of trembles → 0

• Note: THP \rightarrow SE

Summary of 9.6

- Bayesian Games
 - Incomplete Information as "Types"
- Bayesian Nash Equilibrium
- Trembling-hand Perfect Equilibrium
- Sequential Equilibrium
- HW 9.6: Riley 9.6-1~3