## Games with Incomplete Information <br> 資訊不全賽局

Joseph Tao－yi Wang
$2010 / 10 / 8$
（Lecture 6，Micro Theory I－2）

## Games with Incomplete Information

- One or more players know preferences only probabilistically (cf. Harsanyi, 1976-77)
- Player $i$ of Type $t_{i} \in \mathcal{T}_{i}=\left\{1, \cdots, T_{i}\right\}$
- Market Entry Game (of Section 9.2)
- Entrant chooses Enter or Out
- Incumbent chooses Fight or Share
- Both players choose before knowing how strong is player 1 (entrant)'s financial backing


# Market Entry Game with Incomplete Information 

If Entrant's backing is Weak
Agent 2: Incumbent

Agent 1:
Entrant

Enter

Out


# Market Entry Game with Incomplete Information 

If Entrant's backing is Strong
Agent 2: Incumbent

Agent 1:
Entrant

Enter

Out


# Market Entry Game with Incomplete Information 



## Market Entry Game with Incomplete Information

$(\mathbf{0}, \mathbf{6})^{U^{2}}($ Fight $)=p_{2} \cdot 4+\left(1-p_{2}\right) \cdot 2=2+2 p_{2}$
Out Enter 2 Fight (-2,4)

Out Enter 2 Share (3,3)
$(0,6)$

## Market Entry Game with Incomplete Information

$(\mathbf{0}, \mathbf{6})^{U^{2}}($ Fight $)=p_{2} \cdot 4+\left(1-p_{2}\right) \cdot 2=2+2 p_{2}$
Out Enter 2 Fight (-2,4)
Share if
Share (3,3) $\quad p_{2}<1 / 2$
Fight (-1,2) $\begin{aligned} & \text { Fight if } \\ & p_{2}>1 / 2\end{aligned}$
Out Enter 2 Share $(3,3)$
$(\mathbf{0}, \mathbf{6}) U^{2}($ Share $)=p_{2} \cdot 3+\left(1-p_{2}\right) \cdot 3=3$

## Bayesian Nash Equilibrium (BNE)

- Let $U^{i}\left(s ; t_{i}\right), s \in \mathcal{S}$ be the payoffs of player $i \in \mathcal{I}$
- If his type is $t_{i} \in \mathcal{T}_{i}=1, \cdots, T_{i}$
- Let $f\left(t_{1}, \cdots, t_{I}\right)$ be the joint distribution over types, which common knowledge. Then, a
- strategy profile is a Bayesian Nash equilibrium
- If player $i$ 's strategy is a BR at each decision node that is reached with positive probability
- given the common knowledge beliefs


# Bayesian Nash Equilibrium (BNE) 

- As if Nature moves in stage 0 to choose
- Player types $\left(t_{1}, \cdots, t_{I}\right) \in \mathcal{T}_{1} \times \cdots \times \mathcal{T}_{I}$
- Nature's payoffs same for all outcomes
- It is a BR to play mixed strategy $f\left(t_{1}, \cdots, t_{I}\right)$
- BNE of the $I$-player game is NE of the $(I+1)$ player game (with Nature moving first)
- All existence theorems apply...


## Market Entry Game with Incomplete Information

$(0,6)$


# BNE with Player 2 Choosing Share: BR of Player 2 

BNE is (Enter, Share)
$(0,6)$

Out Enter 2 Fight $(-2,4)$ (action of 1, |  | 1 | Share $(3,3)$ |
| :--- | :--- | :--- |
| Weak | $p$ | action if Enter) |
| N |  |  |
| Strong | $1-p$ | Fight $(-1,2)$ |
| Out | Enter 2 Share $(\mathbf{3}, \mathbf{3})$ |  |

# BNE with Player 2 Choosing 

 Share: BR of Player 1$U^{1}($ Enter $)=p u_{1}($ Enter, Share $;$ Weak $)$
$(\mathbf{0 , 6}) \quad+(1-p) u_{1}($ Enter, Share; Strong $)=3$
Out Enter 2 Fight (-2,4)
Share $(3,3)$
Fight (-1,2)
Out Enter 2 Share ( 3,3 )
$(0,6)$
Since $U^{1}(O u t)=0, \underline{\text { Enter } \text { is BR }}$

## BNE with Player 2 Choosing Share: BR of Player 2



# BNE with Player 2 Choosing Share: BR of Player 2 

BNE is (Enter, Share)
$(0,6)$

Out Enter 2 Fight $(-2,4)$ (action of 1, |  | 1 | Share $(3,3)$ |
| :--- | :--- | :--- |
| Weak | $p$ | action if Enter) |
| N |  |  |
| Strong | $1-p$ | Fight $(-1,2)$ |
| Out | Enter 2 Share $(\mathbf{3}, \mathbf{3})$ |  |

## BNE with Player 2 Choosing

 Fight: BR of Player 1BNE is (Out, Fight)

Out Enter 2 Fight $(-2,4) \underset{(\text { action of 1, }}{\triangle}$ | Weak | $p$ | Share $(3,3)$ |
| :--- | :--- | :--- |
| N action if Enter) |  |  |
| Strong | $1-p$ | Fight $(-1,2)$ |
| Out | Enter 2 Share $(3,3)$ |  |
| $(0,6)$ |  |  |

# BNE with Player 2 Choosing 

 Fight: BR of Player 1$U^{1}($ Enter $)=p u_{1}($ Enter, Fight $;$ Weak $)$
$(\mathbf{0}, \mathbf{6}) \quad+(1-p) u_{1}($ Enter, Fight $;$ Strong $)<0$
Out 个 Enter 2 Fight ( $-2,4$ )


Out $\downarrow$ Enter 2 Share ( 3,3 )
$(0,6)$
Since $U^{1}(O u t)=0, \underline{\text { Out is } \mathrm{BR}}$

# BNE with Player 2 Choosing Fight: BR of Player 2 

$(0,6)$
Out Enter 2 Fight $(-2,4)$


Out Enter 2 Share $(3,3)$
$(0,6)$
Fight is BR (but never "tested")

## BNE with Player 2 Choosing

 Fight: BR of Player 1BNE is (Out, Fight)

Out Enter 2 Fight $(-2,4) \underset{(\text { action of 1, }}{\triangle}$ | Weak | $p$ | Share $(3,3)$ |
| :--- | :--- | :--- |
| N action if Enter) |  |  |
| Strong | $1-p$ | Fight $(-1,2)$ |
| Out | Enter 2 Share $(3,3)$ |  |
| $(0,6)$ |  |  |

## Empty Threats Off the Equilibrium Path

- If $p \leq 1 / 2$, Incumbent would not want to Fight
- Not a "Sensible" Equilibrium...
- Problem due to "crazy" beliefs that are:
- Off the Equilibrium Path: nodes that are not reached in equilibrium
- Not reached = Zero probability? Yes here, but not true with continuous types... Comparison:
- On the Equilibrium Path: nodes that are reached in equilibrium


## Trembling-Hand Perfect Equilibrium

- To rule out "crazy" equilibrium, can perturb the BNE by making them completely mixed:
- Consider a game with $T$ stages
- Set of feasible actions at stage $t$ is $A_{t}$ (finite)
- For the BNE $\bar{\pi}=\left(\bar{\pi}_{1}, \cdots, \bar{\pi}_{T}\right)$
- Consider a sequence of completely mixed strategies $\left\{\pi^{k}\right\}_{k=1}^{\infty} \rightarrow \bar{\pi}$ (trembles)
- All nodes are reached (and tested in the BNE)
- No more "crazy" beliefs off the equilibrium path...


## Trembling-Hand Perfect Equilibrium

- A BNE is Trembling-Hand Perfect (THP) if
- There exists some sequence of completely mixed strategy profiles $\left\{\pi^{k}\right\}_{k=1}^{\infty}$
- Converging to the equilibrium strategies, s. t.
- For all sufficiently large $k$, the equilibrium strategies are BR
- Note: If a sequence of Logit QRE converges to a BNE, would the BNE automatically be THP?
- QRE solves this by construct since it is completely mixed already...


## BNE with Player 2 Choosing Fight: Not THP

For all $\left\{\pi^{k}\right\}_{k=1}^{\infty}$, Enter with error probability $\epsilon_{1}^{k}$ $(\mathbf{0}, \mathbf{6}) \quad U^{2}($ Fight $)-U^{2}($ Share $)=(2+2 p)-3$

Out Enter 2 Fight $(-2,4)=2 p-1$ |  | 1 |  |
| :--- | :--- | :--- |
| Weak | $p$ | Share $(3,3)$ |
| $N$ |  | Fight $(-1,2)$ |

Out Enter 2 Share (3,3)
$(0,6)$ If $p \leq 1 / 2, \underline{\text { Fight is not BR when Enter }}$

# BNE with Player 2 Choosing Share: Indeed THP 

For all $\left\{\pi^{k}\right\}_{k=1}^{\infty}$,
$(\mathbf{0}, \mathbf{6}) \quad$ Fight with error probability $\epsilon_{2}^{k}$


## Sequential Equilibrium

- The BNE profile $\left(s_{1}, \cdots, s_{n}\right)$ of the $n$ players in a game is a sequential equilibrium if
- Each strategy is a BR at each node
- When beliefs at each node are the limits of beliefs associated with trembles as the probability of trembles $\rightarrow 0$
- Note: THP $\rightarrow$ SE


## Summary of 9.6

- Bayesian Games
- Incomplete Information as "Types"
- Bayesian Nash Equilibrium
- Trembling-hand Perfect Equilibrium
- Sequential Equilibrium
- HW 9.6: Riley - 9.6-1~3

