Multi-Stage Games

Joseph Tao-yi Wang 2010/9/24

(Lecture 4, Micro Theory I-2)

Games Played More than Once

- In each stage, a simultaneous game is played
- History of the game: h_i^t
- = all information available to player i at period t
- The Second Stage Strategy is a function of history h_1^t
- Two/Three stage repeated game strategy: $s_i = (s_i^1, s_i^2(h_1^1)) \in S_i \times S_i$ $s_i = (s_i^1, s_i^2(h_1^1), s_i^3(h_i^2)) \in S_i \times S_i \times S_i$

Competition for Market Share Over 2 Periods

Unique stage-game Nash Eq. is (*Low*, *Low*)

Agent 2: Colin

Backward Induction: Second Stage

In last stage, unique 2nd stage-game Nash Eq. is (*Low, Low*) Agent 2: Colin

 Continuation Payoff $e = 50\delta$ High
 Low

 Agent 1:
 High
 100, 100
 30, 150

 Rowena
 Low
 150, 30
 50, 50

Backward Induction: First Stage

Continuation Payoff makes no difference...

Unique 1st stage-game Nash Eq. is (*Low*, *Low*)

Agent 1: Rowena

Same for 3 or more stages...

High

Low

Proposition 9.2-1: Equilibrium of Finitely Repeated Game

- Suppose stage game Nash Equilibrium is $\overline{s} = \{\overline{s}_1, \overline{s}_2, \cdots, \overline{s}_n\}$
- When the stage game is repeated T times
- <u>Playing s</u> for <u>T</u> times regardless of history is an equilibrium in the finitely repeated game
- Formally: $\hat{s} = (\hat{s}_1, \cdots, \hat{s}_n) \in \mathbf{R}^{n \times T}$
- where $\hat{s}_i = (\hat{s}_i^1, \hat{s}_i^2(h_i^1), \cdot, \hat{s}_i^T(h_i^{T-1})) = (\overline{s}_i, \cdots, \overline{s}_i)$
- is an equilibrium of the finitely repeated game

Equilibrium of Finitely Repeated Game

- If the stage game Nash equilibrium is unique,
- This equilibrium also uniquely satisfies Backward Induction.
 - Are there other Nash equilibrium?
- What if there are multiple stage game Nash equilibria?
- Consider the Partnership Game in 9.1...

Nash Equilibrium: Partnership Game

- Two Agents have equal share in a partnership
- Choose Effort: $a_i \in A_i = \{1, 2, 3\}$
- Total revenue: $R = 12a_1a_2$
- Cost to agent *i*: $C_i(a_i) = a_i^3$
- Payoff: $u_i(s) = R C_i(a_i) = 12a_1a_2 a_i^3$
- Game matrix and Nash Equilibrium...

Can we do better?

Equilibrium of FRG: Partnership Game

- This is NOT the only two equilibria
- Agents can threat to play the bad equilibrium in stage 2 to induce (3, 3) and earn (27, 27)...
- EX: Use: $\overline{s}_i^1 = 3$, $\overline{s}_i^2(h^1) = 2$ if $h^1 = (3,3)$ $\overline{s}_i^2(h^1) = 1$ if $h^1 \neq (3,3)$
- If other agent follows this strategy,
- Is it a BR to follow this strategy?
- Yes for Stage 2 (both (2, 2) and (1, 1) are SGNE)
 - For Stage 1...

What if MORE rounds?

Sequential Move Games

• T Stages

- Agent $i = i_t \in \mathcal{I}$ moves in stage t
- History prior to stage *t* observed by *i* : h_i^{t-1}
- Set of possible pure strategies in stage t is S_t
- Strategy Profile: $s = (s_1, \cdots, s_T)$
- (Expected) Payoffs: $u_i(s)$ depends on s
- Exists other Nash equilibrium not solved by BI...

Entry Game with Sub-game (Selten's Chain Store Paradox)

But (Out, Fight) is **not credible**:

Definition of a Sub-game

Definition of Sub-game Perfect Equilibrium

 SPE: Strategy must be Nash in all sub-game! (0,6) Out Can be solved by **BI**... Choose *Share* is sub-game ·(-2,1) \ Fight_ Enter Share

Sub-game Perfect Equilibrium of the (reduced) Entry Game

 Reduced entry game (with payoffs from the sub-game)

choose
$$s_1 = Enter$$

• Unique SPE is (*Enter, Share*)

Summary of 9.2

- Finitely Repeated Games
 - Equilibrium Threat and Efficiency
- Sequential Move Game
- Sub-game Perfect Equilibrium
 - Solved by Backward Induction
- HW 9.2: Riley 9.2-1~3

