

Scientific Methods (Wikipedia) (科學方法)

- "The scientific method seeks to explain the events of nature in a reproducible way, and to use these reproductions to make useful predictions. It is done through
- observation of natural phenomena, and/or through experimentation that tries to simulate natural events under controlled conditions."

Two Traditions of Experimental Economics 實驗經濟學的兩大傳統

- Two Nobel Laureates of 2002
- Vernon Smith (臥龍・史密斯)
 - Market Experiments
- Experimental Economics = Economic Science
- ▶ Daniel Kahneman (丹尼・卡尼曼)
 - "Psychology and Economics"
 - aka "Behavioral Economics" (see next slide)
- The two traditions interacted and grew...

What is "Behavioral Economics"? 甚麼是「行為經濟學」? • What does NOT count as "Behavioral" Economics?

- Isn't "Economics" by definition "Behavioral"?
- What counts as "Non-behavioral Economics"?
 - "Bad" economics?
- Non-behavioral Economics doesn't exist!
 - Though terms like "Experimental Economics" and "Behavioral Game Theory" are fine...

Two Traditions of Experimental Economics 實驗經濟學的兩大傳統

- 1. Market Experiments/Design (市場實驗/設計)
 - How Adam Smith's "invisible hand" really works
- . Behavioral Game Theory (行為賽局論)
 - What players actually do in games

Like Two Traditions in Economic Theory:

- General Equilibrium Theory (全面均衡理論)
- Game Theory (賽局論)

Outline of Introduction to BGT 行為賽局論簡介大綱

- 1. What is Game Theory Good For?
- 2. Three Examples:
 - 1. Ultimatum Bargaining (最後通牒談判實驗)
 - 2. Beauty Contests (選美結果猜測實驗)
 - 3. Continental Divide (產業發展分水嶺實驗)
- 3. Experimental Regularity and Behavioral Game Theory
- 4. Conclusion

What is Game Theory? 何謂賽局論?

- Game Theory is about what happens when people---or genes, or nations---interact.
- Game: A taxonomy of strategic situations
 Strategies (策略), Players (玩家), Payoffs (報酬)
- Important Milestones
 - GEB: Von Neumann & Morgenstern (1944)
 - Nash Equilibrium: Nash (PNAS, 1950)
 - Asymmetric information (資訊不透明) as Types: Harsanyi (MS, 1967-68)

What is Game Theory? 何謂賽局論? • Power of game theory: generality/precision • Analytical Game Theory (數學賽局「論」)

- Mathematical derivations of what players with different cognitive capabilities are likely to do
- Possible Problems
 Highly mathematical (High entry barrier)
- Bigger Problem
 - Based on introspection and guesses, not observations about how people actually play

What is Behavioral Game Theory? 何謂行為賽局論?

- Von Neumann and Morgenstern (1944):
 - "Our knowledge of the relevant facts of economics is incomparably smaller than that commanded in physics at the time when mathematization of that subject was achieved..."
- "It would have been absurd in physics to expect Kepler and Newton without Tycho Brahe---and there is no reason to hope for an easier development in economics."

What is Game Theory Good For? 賽局論有什麼用? • Is Game Theory meant to

- Predict what people do,
- Explain why people act this ways,
- Advise people what to do?
- Case: auction theory & real world auctions
 - Auction Theory vs. Experimental Evidence
 - Auction Theory vs. Real world auction design

Three Examples 三個例子

- BGT: what players actually do. By utilizing results from hundreds of experiments
- Ultimatum Bargaining (最後通牒談判實驗)
- 1.
- Beauty Contests (選美結果預測實驗) 2.
- Continental Divide (產業發展分水嶺實驗) 3.
- Goal: Show how BGT can explain what people do more accurately by extending analytical game theory to include social preferences (fairness), limited strategic thinking, & learning.

Example 1: Ultimatum Bargaining 例一:最後通牒談判

- The Environment:
- Two players: Proposer and Respondent
- Action of Proposer: First makes a proposal regarding how to split NT\$1000. (100-900, 200-800, 300-700, 400-600, 500-500, etc.)
- Act of Respondent: Accepts or Rejects the proposal.
- Outcome: Split accordingly if respondent accepts, both get nothing if rejects.

Example 1: Ultimatum Bargaining 例一:最後通牒談判

- Photographer vs. Tourist
- AGT Predictions
 - Responders accept any low offer
 - Proposers offer "unfairly"
- Experimental Results
 - Responders reject "unfair" offers
 - Proposers often offer "fairly" (50-50)
- BGT Explanation:
 - Negative Reciprocity (你對我不仁,我就對你不義)

Example 1: Ultimatum Bargaining 例一:最後通牒談判 Responders don't maximize own earnings • Still think strategically (but w/ social preferences) • Further Investigation: Primitive societies under different culture of

- "fairness" (Ch.2)
- Knoch, …, Fehr, Science 2006
 - TMS someone's DLPFC, and s/he will accept "unfair" offers

Example 2: Beauty Contest 例二:選美結果預測

- Keynes (1936, p. 156), "It is not a case of choosing those which, to the best of one's judgment, are really the prettiest,
- nor even those which average opinion genuinely thinks the prettiest.
- We have reached the third degree, where we devote our intelligences to anticipating what average opinion expects the average opinion to be. And there are some, I believe, who practice the fourth, fifth, and higher degrees."

Example 2: Beauty Contest 例二:選美結果預測

- p-Beauty Contest Game (aka Guessing Game)
- The Environment: N players
- Action of Player: Each player guesses a number from 0~100
- Outcome: The person whose number is closest to p=2/3 of the average of all guesses wins

Example 2: Beauty Contest 例二:選美結果預測

- AGT Predictions
 - Unique Nash: Choose 0 (dominant solvable)
- Experimental Results
 - First-round choices around 21-40
 - Converge to 0 within 10 rounds
- BGT Explanations
 - Limited iterated reasoning (level-k; 多層次思考)
 - Learning: Towards equilibrium (學習「到」均衡)

Example 3: Continental Divide 例三:產業發展分水嶺

- Location Problem: Silicon Valley or Hollywood?
- Seven people a group, each choose 1~14
- Payoff dep. on your choice & group median
 Main part of the payoff matrix in the next slide
- Key Feature:
 - Should pick low if others pick low
 - · Should pick high if others pick high
- When everyone is going to China, Hsinchu Science Park, etc. will you follow this trend?

Example 3: Continental Divide									de	
例三:產業發展分水嶺										
	3	4	5	6	7	8	9	10	11	12
3	60	66	70	74	72	1	-20	-32	-41	-48
4	58	65	71	77	80	26	8	-2	-9	-14
5	52	60	69	77	83	46	32	25	19	15
6	42	52	62	72	82	62	53	47	43	41
7	28	40	51	64	78	75	69	66	64	63
8	11	23	37	51	69	83	81	80	80	80
9	-11	3	18	35	57	88	89	91	92	94
10	-37	-21	-4	15	40	89	94	98	101	104
11	-66	-49	-31	-9	20	85	94	100	105	110
12	-100	-82	-61	-37	-5	78	91	99	106	112

Example 3: Continental Divide										•••
例三:產業發展分水嶺										
	3	4	5	6	7	8	9	10	11	12
3	60	66	70	74	72	1	-20	-32	-41	-48
4	58	65	71	77	80	26	8	-2	-9	-14
5	52	60	69	77	83	46	32	25	19	15
6	42	52	62	72	82	62	53	47	43	41
7	28	40	51	64	78	75	69	66	64	63
8	11	23	37	51	69	83	81	80	80	80
9	-11	3	18	35	57	88	89	91	92	94
10	-37	-21	-4	15	40	89	94	98	101	104
11	-66	-49	-31	-9	20	85	94	100	105	110
12	-100	-82	-61	-37	-5	78	91	99	106	112

Example 3: Continental Divide 例三:產業發展分水嶺

- AGT Predictions
 - Multiple Equilibrium: 3 or 12
- Experimental Results
 - Don't always gravitate toward Good Eq.
 - Small history accidents have big LR impact
- BGT Explanation
 - Learning in the "basin of attraction"
 - Initial Conditions: Lucky 7 vs. 8 (一路發)?

Experimental Regularity & BGT 一致的實驗結果vs.行為賽局論

- Goal: <u>Improve</u> game theory by establishing regularity and inspiring new theory
- Why has empirical observation played a small role in game theory until recently?
- How others react to data?
- 1. People are confused, not motivated
- 2. Experimental designs are all bad
- 3. People were playing a different game
- 4. Non-rational behavior can't be modeled

Conclusion 結論

- AGT → Experimental Regularities → BGT
- Three Examples
- Want to see more?
 - Camerer (2003), Behavioral Game Theory...
- HW0:
 - Read BGT, Ch.1 and Lecture notes on Experimental Economics and BGT (both online)
 - Solve the equilibrium of the three examples above (consult an intermediate micro textbook if needed)